7.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且a=4,cosA=$\frac{3}{4}$,sinB=$\frac{5\sqrt{7}}{16}$,c>4.
(1)求b;
(2)求△ABC的周長(zhǎng).

分析 (1)由已知及同角三角函數(shù)基本關(guān)系式可求sinA的值,進(jìn)而由正弦定理可得b的值.
(2)由已知及余弦定理可得c的值,即可得解△ABC的周長(zhǎng).

解答 解:(1)∵a=4,cosA=$\frac{3}{4}$,sinB=$\frac{5\sqrt{7}}{16}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{7}}{4}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{4×\frac{5\sqrt{7}}{16}}{\frac{\sqrt{7}}{4}}$=5.
(2)∵由余弦定理可得:a2=b2+c2-2bccosA,可得:16=25+c2-2×$5×c×\frac{3}{4}$,
整理可得:2c2-15c+18=0,解得:c=6或$\frac{3}{2}$(由C>4,舍去),
∴△ABC的周長(zhǎng)=a+b+c=4+5+6=15.

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,正弦定理,余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.在平面直角坐標(biāo)系xoy中,A,B是圓x2+y2=4上的兩個(gè)動(dòng)點(diǎn),且AB=2,則線段AB中點(diǎn)M的軌跡方程為x2+y2=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若一圓弧長(zhǎng)等于它所在圓的內(nèi)接正三角形的邊長(zhǎng),則該弧所對(duì)的圓心角弧度數(shù)為( 。
A.$\frac{π}{3}$B.$\sqrt{3}$C.$\frac{2π}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.定義在實(shí)數(shù)集R上的函數(shù)f(x)都可以寫(xiě)為一個(gè)奇函數(shù)g(x)與一個(gè)偶函數(shù)h(x)之和的形式,如果f(x)=2x+1,那么( 。
A.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$B.$g(x)=\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=1+\frac{{{2^x}+{2^{-x}}}}{2}$
C.$g(x)=1+\frac{{{2^x}-{2^{-x}}}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}}}{2}$D.$g(x)=\frac{{{2^x}-{2^{-x}}+1}}{2}$,$h(x)=\frac{{{2^x}+{2^{-x}}+1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.以兩點(diǎn)(-2,4),(8,-2)為直徑的圓的圓心是(3,1),該圓的標(biāo)準(zhǔn)方程是(x-3)2+(y-1)2=34.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性480人,其中有38人患色盲,調(diào)查的520名女性中有6人患色盲.
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2列聯(lián)表;
(2)若認(rèn)為“性別與患色盲有關(guān)系”,則出錯(cuò)的概率會(huì)是多少?
附1:隨機(jī)變量:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(c+a)(b+d)}$
附2:臨界值參考表:
P(K2≥x00.100.050.0250.100.0050.001
x02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.方程$\frac{x|x|}{16}+\frac{y|y|}{9}=-1$的曲線即為函數(shù)y=f(x)的圖象,對(duì)于函數(shù)y=f(x),有如下結(jié)論:
①f(x)在R上單調(diào)遞減;
②函數(shù)F(x)=4f(x)+3x不存在零點(diǎn);
③y=f(|x|)的最大值為3;
④若函數(shù)g(x)和f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,則y=g(x)由方程$\frac{y|y|}{16}+\frac{x|x|}{9}=1$確定.
其中所有正確的命題序號(hào)是( 。
A.③④B.②③C.①④D.①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$).
(1)用“五點(diǎn)法”畫(huà)出函數(shù)在一個(gè)周期內(nèi)的圖象;
(2)完整敘述函數(shù)f(x)=2sin($\frac{1}{3}x-\frac{π}{6}$)的圖象可以由函數(shù)f(x)=2sinx的圖象經(jīng)過(guò)兩步怎樣的變換得到;
(3)求使f(x)≥0成立的取值集合.
解:(1)
$\frac{1}{3}$x-$\frac{π}{6}$0$\frac{π}{2}$π$\frac{3π}{2}$2
x$\frac{π}{2}$$\frac{7π}{2}$$\frac{13π}{2}$
y02020

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知p:|x|≤2,q:0≤x≤2,則p是q的( 。l件.
A.充要B.充分不必要
C.必要不充分D.既不充分也不必要

查看答案和解析>>

同步練習(xí)冊(cè)答案