二階矩陣M對(duì)應(yīng)的變換將點(diǎn)與分別變換成點(diǎn)與.
(Ⅰ)求矩陣M的逆矩陣;
(Ⅱ)設(shè)直線在變換M作用下得到了直線:,求直線的方程.
(Ⅰ) =;(Ⅱ) .
解析試題分析:(Ⅰ)設(shè),則有= ,
=,
所以,且,解得所以M=,從而|M|=-2,
從而M-1=。
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c1/e/ee7no3.png" style="vertical-align:middle;" />=,且m:2x'-y'=4,所以2(x+2y)-(3x+4y)=4,即x+4=0為直線l的方程。
考點(diǎn):本題主要考查逆矩陣與投影變換,直線方程等。
點(diǎn)評(píng):中檔題,由已知二階矩陣M對(duì)應(yīng)的變換將點(diǎn)(1,-1)與(-2,1)分別變換成點(diǎn)(-1,-1)與(0,-2).可構(gòu)造關(guān)于a,b,c,d的四元一次方程組,解方程組可得矩陣M,進(jìn)而得到矩陣M的逆矩陣M-1。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、(-∞,2] | B、[2,+∞) | C、(-∞,-2] | D、[-2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
二階矩陣M有特征值,其對(duì)應(yīng)的一個(gè)特征向量e=,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)變換成點(diǎn).
(1)求矩陣M;
(2)求矩陣M的另一個(gè)特征值及對(duì)應(yīng)的一個(gè)特征向量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知矩陣A=,若矩陣A屬于特征值6的一個(gè)特征向量為α1=,屬于特征值1的一個(gè)特征向量為α2=.求矩陣A,并寫出A的逆矩陣.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
將正整數(shù)()任意排成行列的數(shù)表.對(duì)于某一個(gè)數(shù)表,計(jì)算各行和各列中的任意兩個(gè)數(shù)()的比值,稱這些比值中的最小值為這個(gè)數(shù)表的“特征值”.若表示某個(gè)行列數(shù)表中第行第列的數(shù)(,),且滿足,當(dāng)時(shí)數(shù)表的“特征值”為_________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知2×2矩陣A有特征值λ1=3及其對(duì)應(yīng)的一個(gè)特征向量α1=,特征值λ2=-1及其對(duì)應(yīng)的一個(gè)特征向量α2=,求矩陣A的逆矩陣A-1.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com