已知數(shù)列{an}前n項和為Sn,若Sn=2n-1,則a8=   
【答案】分析:利用a8=S8-S7,直接求解即可.
解答:解:因為數(shù)列{an}前n項和為Sn,若Sn=2n-1,
所以a8=S8-S7=28-1-(27-1)=27=128.
故答案為:128.
點評:本題是基礎(chǔ)題,考查數(shù)列的前n項和與數(shù)列通項的關(guān)系,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前 n項和為Sn,且Sn=n2,
(1)求{an}的通項公式    
(2)設(shè) bn=
1anan+1
,求數(shù)列{bn}的前 n項 和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項和Sn和通項an滿足Sn=-
1
2
(an-1)

(1)求數(shù)列{an}的通項公式; 
(2)試證明Sn
1
2
;
(3)設(shè)函數(shù)f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求
1
b1
+
1
b2
+…+
1
b99
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項和Sn=2n-1,則數(shù)列{an}的奇數(shù)項的前n項的和是
4n-1
3
4n-1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項和Sn=2an+2n
(Ⅰ)證明數(shù)列{
an
2n-1
}
是等差數(shù)列,并求{an}的通項公式;
(Ⅱ)若bn=
(n-2011)an
n+1
,求數(shù)列{bn}是否存在最大值項,若存在,說明是第幾項,若不存在,請說明理由;
(Ⅲ)設(shè)Tn=|S1|+|S2|+|S3|+…+|Sn|,試比較
Tn+Sn
2
2-n
1+n
an
的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}前n項和Sn=n2+2n,設(shè)bn=
1anan+1

(1)試求an;
(2)求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案