想要得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=cos(
π
3
-2x)( 。┒玫剑
A、向右平移
π
6
個單位
B、向右平移
π
3
個單位
C、向左平移
π
6
個單位
D、向左平
π
3
個單位
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:由條件利用誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答: 解:將函數(shù)y=cos(
π
3
-2x)=cos2(x-
π
6
)的圖象向左平移
π
6
個單位,
即可得到函數(shù)y=cos2x的圖象,
故選:C.
點評:本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(2,3),
b
=(cosθ,sinθ)且
a
b
,則tanθ=( 。
A、
2
3
B、-
2
3
C、
3
2
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
2
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線x-y+
2
=0相切.
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C相交于兩點 A,B,設(shè)P為橢圓上一點,且滿足
OA
+
OB
=t
OP
( O為坐標原點),當|
PA
-
PB
|<
2
5
3
時,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出如下五個結(jié)論:
①若△ABC為鈍角三角形,則sinA<cosB.
②存在區(qū)間(a,b)使y=cosx為減函數(shù)而sinx<0
③函數(shù)y=2x3-3x+1的圖象關(guān)于點(0,1)成中心對稱
④y=cos2x+sin(
π
2
-x)既有最大、最小值,又是偶函數(shù)
⑤y=|sin(2x+
π
4
)|最小正周期為π
其中正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若△ABC中,C=30°,a+b=1,則△ABC面積S的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x=4cscθ
y=2cotθ
(θ為參數(shù),θ≠kπ,k∈z)的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:a,b,c均為正實數(shù),則(a+b+c)(
1
a+b
+
1
c
)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:方程x2+y2+4mx-2y+5m=0表示圓,命題q:向量
a
=(m,-1,
2
)
的模小于2,若p∧q為真命題,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
1
2
sin2x是( 。
A、最小正周期為2π的偶函數(shù)
B、最小正周期為2π的奇函數(shù)
C、最小正周期為π的偶函數(shù)
D、最小正周期為π的奇函數(shù)

查看答案和解析>>

同步練習(xí)冊答案