若向量
a
=(2,3),
b
=(cosθ,sinθ)且
a
b
,則tanθ=(  )
A、
2
3
B、-
2
3
C、
3
2
D、-
3
2
考點:平面向量共線(平行)的坐標(biāo)表示
專題:平面向量及應(yīng)用
分析:根據(jù)兩向量平行的坐標(biāo)表示,求出sinθ與cosθ的關(guān)系,即得tanθ的值.
解答: 解:∵向量
a
=(2,3),
b
=(cosθ,sinθ),且
a
b
,
∴2sinθ-3cosθ=0,
即2sinθ=3cosθ
∴cosθ≠0
∴tanθ=
sinθ
cosθ
=
3
2

故選:C.
點評:本題考查了平面向量的坐標(biāo)表示的應(yīng)用問題,也考查了同角的三角函數(shù)關(guān)系,是基礎(chǔ)題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(m+1,0,2m),
b
=(6,0,2),
a
b
,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中既是偶函數(shù),又在(0,+∞)上是單調(diào)遞增函數(shù)的是(  )
A、y=-x2+1
B、y=|x|+1
C、y=log2x+1
D、y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-x-1,g(x)=x3-x2-5x+m,若存在x1∈(-2,2)使得f(x1)≤g(x1)成立,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
4
)(ω>0)的一條對稱軸是x=
π
8
,則函數(shù)f(x)的最小正周期不可能是( 。
A、
π
9
B、
π
5
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a=(
2
5
2,b=log2
5
6
,c=2 
2
5
,則a、b、c的大小關(guān)系為.
A、a<b<c
B、b<a<c
C、b<c<a
D、a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,側(cè)棱垂直于底面的三棱柱ABC-A1B1C1的底面ABC位于平行四邊形ACDE中,AE=2,AA1=4,∠E=60°,點B為DE中點,AB⊥BC.
(1)求AC的長;
(2)求二面角A-A1C-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3},B={2,3,4,5},則A∩B=(  )
A、{2,3}
B、{1,4,5}
C、{2,3,4}
D、{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

想要得到函數(shù)y=cos2x的圖象,只需將函數(shù)y=cos(
π
3
-2x)( 。┒玫剑
A、向右平移
π
6
個單位
B、向右平移
π
3
個單位
C、向左平移
π
6
個單位
D、向左平
π
3
個單位

查看答案和解析>>

同步練習(xí)冊答案