分析 (1)利用正弦定理化簡已知等式,可得sinC=$\sqrt{3}$cosC,結(jié)合C是三角形的內(nèi)角,得出C=60°;
(2)由已知及余弦定理,基本不等式可求ab≤4,進而利用三角形面積公式即可得解.
解答 (本題滿分為12分)
解:(1)∵csinA=$\sqrt{3}$acosC,
∴由正弦定理,得sinCsinA=$\sqrt{3}$sinAcosC
結(jié)合sinA>0,可得sinC=$\sqrt{3}$cosC,得tanC=$\sqrt{3}$
∵C是三角形的內(nèi)角,
∴C=60°;
(2)∵c=2,C=60°,
∴由余弦定理可得:4=a2+b2-ab≥2ab-ab=ab,當(dāng)且僅當(dāng)a=b時等號成立,
∴S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}×4×\frac{\sqrt{3}}{2}$=$\sqrt{3}$,當(dāng)且僅當(dāng)a=b時等號成立,即△ABC的面積的最大值為$\sqrt{3}$.
點評 本題主要考查了正弦定理,余弦定理,基本不等式,三角形面積公式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 25% | B. | 50% | C. | 70% | D. | 75% |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{20}{3}$π | B. | $\frac{10}{3}$π | C. | $\frac{20}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2\sqrt{5}}{5}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\sqrt{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$-1 | B. | 2 | C. | 2$\sqrt{5}$-2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{2}}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,+∞] | C. | (-∞,-$\frac{\sqrt{2}}{2}$],(0,$\frac{\sqrt{2}}{2}$) | D. | [-$\frac{\sqrt{2}}{2}$,0),(0,$\frac{\sqrt{2}}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com