5.2013年8月,考古學(xué)家在湖北省隨州市葉家山發(fā)現(xiàn)了大量的古墓,經(jīng)過對生物體內(nèi)碳14含量的測量,估計該古墓群應(yīng)該形成于公元前850年左右的西周時期,已知碳14的“半衰期”為5730年(即含量大約經(jīng)過5730年衰減為原來的一半),由此可知,所測生物體內(nèi)碳14的含量應(yīng)最接近于( 。
A.25%B.50%C.70%D.75%

分析 依題意知,生物體內(nèi)碳14含量P與死亡年數(shù)t的關(guān)系為:$P={(\frac{1}{2})^{\frac{t}{5730}}}$,而生物體距發(fā)掘時有約2863年,故可得$P=(\frac{1}{2})^{\frac{2863}{5730}}$,計算得答案.

解答 解:依題意知,生物體內(nèi)碳14含量P與死亡年數(shù)t的關(guān)系為:$P={(\frac{1}{2})^{\frac{t}{5730}}}$,
而生物體距發(fā)掘時有約2863年,故可得$P={(\frac{1}{2})^{\frac{2863}{5730}}}≈0.7$.
故選:C.

點評 本題考查了有理指數(shù)冪的化簡求值,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}的通項公式為an=n-11,當(dāng)其前n項和Sn取得最小值時,n等于10或11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=x3+2f′(1)x2+1,則f(-1)=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知復(fù)數(shù)z滿足$\frac{z}{1+i}$=2-i,則z=3+i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3+ax2+bx在x=-$\frac{2}{3}$與x=1處都取得極值.
(1)求a,b的值;
(2)求曲線y=f(x)在x=2處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某程序框圖如圖所示,該程序運行后輸出的k的值是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17. 2017年5月14日“一帶一路”國際合作高峰論壇在北京舉行,會議期間,達(dá)成了多項國際合作協(xié)議,其中有一項是在某國投資建設(shè)一個深水港碼頭.如圖,工程師為了解深水港碼頭海域海底的構(gòu)造,在海平面內(nèi)一條直線上取A,B,C三點進(jìn)行測量,已知AB=60cm,BC=120cm,在A處測得水深A(yù)D=120cm,在B處測得水深BE=200m,在C處測得水深CF=150m,則cos∠DEF=$-\frac{16}{65}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若曲線y=x2+alnx在點(1,1)處的切線方程為y=3x-2,則a=( 。
A.1B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的三內(nèi)角A、B、C的對邊分別為a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求角C的大小;
(2)若c=2,求△ABC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案