精英家教網 > 高中數學 > 題目詳情

【題目】下列說法正確的是( )

A.將一組數據中的每個數據都乘以同一個非零常數a后,方差也變?yōu)樵瓉淼?/span>a

B.設有一個回歸方程,變量x增加1個單位時,y平均減少5個單位

C.線性相關系數r越大,兩個變量的線性相關性越強;反之,線性相關性越弱

D.在某項測量中,測量結果ξ服從正態(tài)分布N1,σ2)(σ0),則Pξ1)=0.5

【答案】BD

【解析】

A,方差應變?yōu)樵瓉淼?/span>a2倍;對B,x增加1個單位時計算y值與原y值比較可得結論;線性相關系數|r|越大,兩個變量的線性相關性越強,反之,線性相關性越弱;根據正態(tài)曲線關于x=1對稱即可判斷.

對于選項A:將一組數據中的每個數據都乘以同一個非零常數a后,方差變?yōu)樵瓉淼?/span>a2倍,故錯誤.

對于選項B:若有一個回歸方程,變量x增加1個單位時,y平均減少5個單位,正確.

對于選項C:線性相關系數|r|越大,兩個變量的線性相關性越強;反之,線性相關性越弱,錯誤.

對于選項D:在某項測量中,測量結果ξ服從正態(tài)分布N1,σ2)(σ0),由于正態(tài)曲線關于x=1對稱,則Pξ1)=0.5,正確.

故選:BD

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】隨著經濟的發(fā)展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調整,調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額,依照個人所得稅稅率表,調整前后的計算方法如下表:

(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應納的稅,試寫出調整前后關于的函數表達式;

(2)某稅務部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數分布表:

①先從收入在的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,用表示抽到作為宣講員的收入在元的人數,表示抽到作為宣講員的收入在元的人數,隨機變量,求的分布列與數學期望;

②小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調整后小紅的實際收入比調整前增加了多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數據(單位:m3)和使用了節(jié)水龍頭50天的日用水量數據,得到頻數分布表如下:

未使用節(jié)水龍頭50天的日用水量頻數分布表

日用

水量

頻數

1

3

2

4

9

26

5

使用了節(jié)水龍頭50天的日用水量頻數分布表

日用

水量

頻數

1

5

13

10

16

5

(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數據的頻率分布直方圖:

2)估計該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;

3)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計算,同一組中的數據以這組數據所在區(qū)間中點的值作代表.)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】西瓜是夏日消暑的好水果,西瓜的銷售價格(單位:千元/噸)與西瓜的年產量(單位:噸)有關,下表數據為某地區(qū)連續(xù)6年來西瓜的年產量及對應的西瓜銷售價格.

1

2

3

4

5

6

1)若有較強的線性相關關系,根據上表提供的數據,用最小二乘法求出的線性回歸直線方程(系數精確到);

2)若每噸西瓜的成本為4810元,假設所有西瓜可以全部賣出,預測當年產量為多少噸 時年利潤最大?

參考公式及數據:

p>對于一組數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,,其中,,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某森林公園有一直角梯形區(qū)域ABCD,其四條邊均為道路,AD∥BC,∠ADC=90°,AB=5千米,BC=8千米,CD=3千米.現甲、乙兩管理員同時從地出發(fā)勻速前往D地,甲的路線是AD,速度為6千米/小時,乙的路線是ABCD,速度為v千米/小時.

(1)若甲、乙兩管理員到達D的時間相差不超過15分鐘,求乙的速度v的取值范圍;

(2)已知對講機有效通話的最大距離是5千米.若乙先到達D,且乙從AD的過程中始終能用對講機與甲保持有效通話,求乙的速度v的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為, 的極坐標方程為.

1求直線的交點的軌跡的方程;

(2)若曲線上存在4個點到直線的距離相等,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點坐標分別是,并且經過點.

(1)求橢圓的方程;

(2)若直線與圓相切,并與橢圓交于不同的兩點.,且滿足時,求面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一圓經過點,且它的圓心在直線.

I)求此圓的方程;

II)若點為所求圓上任意一點,且點,求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數和中位數;

3)在月平均用電量為,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應抽取多少戶?

查看答案和解析>>

同步練習冊答案