【題目】已知圓,直線,若直線上存在點,過點引圓的兩條切線,使得,則實數(shù)的取值范圍是( )
A. B. [,]
C. D. )
【答案】D
【解析】
由題意結合幾何性質(zhì)可知點P的軌跡方程為,則原問題轉(zhuǎn)化為圓心到直線的距離小于等于半徑,據(jù)此求解關于k的不等式即可求得實數(shù)k的取值范圍.
圓C(2,0),半徑r=,設P(x,y),
因為兩切線,如下圖,PA⊥PB,由切線性質(zhì)定理,知:
PA⊥AC,PB⊥BC,PA=PB,所以,四邊形PACB為正方形,所以,|PC|=2,
則:,即點P的軌跡是以(2,0)為圓心,2為半徑的圓.
直線過定點(0,-2),直線方程即,
只要直線與P點的軌跡(圓)有交點即可,即大圓的圓心到直線的距離小于等于半徑,
即:,解得:,
即實數(shù)的取值范圍是).
本題選擇D選項.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓,為橢圓的左、右焦點,點在直線上且不在軸上,直線與橢圓的交點分別為和,為坐標原點.
設直線的斜率為,證明:
問直線上是否存在點,使得直線的斜率滿足?若存在,求出所有滿足條件的點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)求使方程存在兩個實數(shù)解時,的取值范圍;
(2)設,函數(shù),.若對任意,總存在,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線E:,圓C:.
若過拋物線E的焦點F的直線l與圓C相切,求直線l方程;
在的條件下,若直線l交拋物線E于A,B兩點,x軸上是否存在點使為坐標原點?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓的參數(shù)方程為(為參數(shù)),過點作斜率為的直線與圓交于,兩點.
(1)若圓心到直線的距離為,求的值;
(2)求線段中點的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,AA1=6,點E、F分別在棱BB1、CC1上,且BE=BB1,C1F=CC1.
(1)求異面直線AE與A1F所成角的大。
(2)求平面AEF與平面ABC所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某區(qū)“創(chuàng)文明城區(qū)”(簡稱“創(chuàng)城”)活動中,教委對本區(qū)四所高中學校按各校人數(shù)分層抽樣,隨機抽查了100人,將調(diào)查情況進行整理后制成下表:
學校 | ||||
抽查人數(shù) | 50 | 15 | 10 | 25 |
“創(chuàng)城”活動中參與的人數(shù) | 40 | 10 | 9 | 15 |
(注:參與率是指:一所學!皠(chuàng)城”活動中參與的人數(shù)與被抽查人數(shù)的比值)假設每名高中學生是否參與”創(chuàng)城”活動是相互獨立的.
(1)若該區(qū)共2000名高中學生,估計學校參與“創(chuàng)城”活動的人數(shù);
(2)在隨機抽查的100名高中學生中,隨機抽取1名學生,求恰好該生沒有參與“創(chuàng)城”活動的概率;
(3)在上表中從兩校沒有參與“創(chuàng)城”活動的同學中隨機抽取2人,求恰好兩校各有1人沒有參與“創(chuàng)城”活動的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線為(為參數(shù)).在以為原點, 軸正半軸為極軸的極坐標系中,曲線的極坐標方程為,射線與除極點外的一個交點為,設直線經(jīng)過點,且傾斜角為,直線與曲線的兩個交點為.
(1)求的普通方程和的直角坐標方程;
(2)求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com