9.已知函數(shù)f(x)=xlnx+ax+b在點(diǎn)(1,f(1))處的切線為3x-y-2=0.
(1)求函數(shù)f(x)的解析式;
(2)若k∈Z,且對(duì)任意x>1,都有k<$\frac{f(x)}{x-1}$成立,求k的最大值.

分析 (1)首先對(duì)f(x)求導(dǎo),求出(1,f(1))點(diǎn)處的切線方程與3x-y-2=0相等即可;
(2)由題意轉(zhuǎn)換為:令$g(x)=\frac{xlnx+2x-1}{x-1}$,則k<g(x)min.利用導(dǎo)數(shù)求出g(x)的最小值即可.

解答 解:(1)f(x)的定義域?yàn)椋?,+∞),f'(x)=lnx+1+a,
∴$\left\{\begin{array}{l}f'(1)=a+1=3\\ f(1)=a+b=1\end{array}\right.$⇒$\left\{\begin{array}{l}a=2\\ b=-1\end{array}\right.$
∴f(x)=xlnx+2x-1.
(2)$k<\frac{f(x)}{x-1}$可化為$k<\frac{xlnx+2x-1}{x-1}$,
令$g(x)=\frac{xlnx+2x-1}{x-1}$,則k<g(x)min,$g'(x)=\frac{x-2-lnx}{{{{(x-1)}^2}}}$,x∈(1,+∞).
令h(x)=x-2-lnx,
則$h'(x)=1-\frac{1}{x}=\frac{x-1}{x}>0$,
∴h(x)在(1,+∞)上為增函數(shù).
又h(3)=1-ln3<0,h(4)=2-ln4>0,
故存在唯一的x0∈(3,4)使得h(x0)=0,即x0-2=lnx0
當(dāng)x∈(1,x0)時(shí),h(x)<0,∴g'(x)<0,∴g(x)在(1,x0)上為減函數(shù);
當(dāng)x∈(x0,+∞)時(shí),h(x)>0,∴g'(x)>0,∴g(x)在(x0,+∞)上為增函數(shù).
∴$g{(x)_{min}}=g({x_0})=\frac{{{x_0}ln{x_0}+2{x_0}-1}}{{{x_0}-1}}=\frac{{{x_0}({x_0}-2)+2{x_0}-1}}{{{x_0}-1}}={x_0}+1$,
∴k<x0+1.
∵x0∈(3,4),
∴x0+1∈(4,5),∵k∈Z,
∴k的最大值為4.

點(diǎn)評(píng) 本題主要考查了函數(shù)單調(diào)性,函數(shù)的切線方程求法,以及構(gòu)造新函數(shù)比較大小,屬中等難度題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)F(c,0),A(-a,0)分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)焦點(diǎn)和頂點(diǎn),它的右準(zhǔn)線為l:x=4,且橢圓C過點(diǎn)(c,$\frac{\sqrt{3}b}{2}$).
(1)求橢圓C的方程;
(2)設(shè)P,Q是右準(zhǔn)線l上的兩個(gè)動(dòng)點(diǎn),且PF⊥QF,直線AP,AQ分別與橢圓交于點(diǎn)M,N兩點(diǎn),求證:直線MN過一定點(diǎn),并求出此定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.等差數(shù)列{an}中,a1>0,S9=S12,則前10或11項(xiàng)的和最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=$\sqrt{3}$sinxcosx+cos2x-$\frac{1}{2}$在[0,$\frac{π}{2}$]的值域是(  )
A.[-1,1]B.[$\frac{1}{2}$,1]C.[-$\frac{1}{2}$,1]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知命題p:函數(shù)y=ax在R上單調(diào)遞減.命題q:函數(shù)y=$\sqrt{a{x^2}-6ax+8+a}$的定義域?yàn)镽,若命題p∨(?q)為假命題,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=cosx•cos(x-$\frac{π}{3}$),則使f(x)<$\frac{1}{4}$成立的x的取值集合是
(kπ-$\frac{7π}{12},kπ-\frac{π}{12}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,已知AB=1,BC=2,CD=4,AB∥CD,BC⊥CD,平面PAB⊥平面ABCD,PA⊥AB,
(1)求證:BD⊥平面PAC
(2)已知點(diǎn)F在棱PD上,且PB∥平面FAC,若PA=5,求三棱錐D-FAC的體積VD-FAC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)
幾何題代數(shù)題總計(jì)
男同學(xué)22830
女同學(xué)81220
總計(jì)302050
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在5-7分鐘,乙每次解答一道幾何題所用的時(shí)間在6-8分鐘,現(xiàn)甲、乙同時(shí)各解同一道幾何題,求乙比甲先解答完的概率;
(3)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,求甲、乙兩名女生至少有一人被選中的概率.
附表及公式:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k20722.7063.8415.0246.6357.87910.828
${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知點(diǎn)的極坐標(biāo)為(2,$\frac{5π}{6}$),其直角坐標(biāo)為$(-\sqrt{3},1)$.

查看答案和解析>>

同步練習(xí)冊(cè)答案