A. | [-1,1] | B. | [$\frac{1}{2}$,1] | C. | [-$\frac{1}{2}$,1] | D. | [0,1] |
分析 首先對三角函數(shù)式進行化簡得y=$sin(2x+\frac{π}{6})$,再求出2x+$\frac{π}{6}$的取值范圍后求值域.
解答 解:由題意知化簡三角函數(shù)式:
y=$\sqrt{3}$sinxcosx+cos2x-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}sin2x$+$\frac{cos2x+1}{2}$-$\frac{1}{2}$
=$sin(2x+\frac{π}{6})$
∵x∈[0,$\frac{π}{2}$]
∴$\frac{π}{6}≤2x+\frac{π}{6}≤\frac{7π}{6}$
∴-$\frac{1}{2}$≤sin(2x+$\frac{π}{6}$)≤1
故選:C
點評 本題主要考查了三角函數(shù)倍角公式、和差化簡公式,以及三角函數(shù)值域求法,屬基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞增 | B. | f(x)在$(\frac{π}{4},\frac{3π}{4})$單調(diào)遞減 | ||
C. | f(x)在$(\frac{π}{6},\frac{π}{3})$單調(diào)遞增 | D. | f(x)在$(\frac{π}{6},\frac{π}{3})$單調(diào)遞減 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com