已知函數(shù)f(x)=
1-sin2x
cosx

(1)求f(x)的定義域、f(
π
6
)的值;
(2)設(shè)α是第二象限的角,且tanα=-
4
3
,求f(α)的值.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專(zhuān)題:三角函數(shù)的求值
分析:(1)根據(jù)分母不為0求出f(x)的定義域即可;將x=
π
6
代入即可求出f(
π
6
)的值;
(2)由α為第二象限角,根據(jù)tanα的值求出cosα及sinα的值,代入計(jì)算即可求出f(α)的值.
解答: 解:(1)由cosx≠0得:x≠kπ+
π
2
(k∈Z),
∴f(x)的定義域?yàn)閧x|x≠kπ+
π
2
,k∈Z};
f(
π
6
)=
1-sin
π
3
cos
π
6
=
1-
3
2
3
2
=
2
3
3
-1;
(2)∵tanα=-
3
4
,α為第二象限角,
∴cosα=-
1
1+tan2α
=-
4
5
,sinα=
1-cos2α
=
3
5
,
則f(α)=
1-2sinαcosα
cosα
=
1-2×
3
5
×(-
4
5
)
-
4
5
=-
49
20
點(diǎn)評(píng):此題考查了同角三角函數(shù)基本關(guān)系的運(yùn)用,以及二倍角的正弦函數(shù)公式,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是橢圓
x2
4
+
y2
3
=1上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是左、右焦點(diǎn).點(diǎn)Q滿足
PQ
F1P
是方向相同的向量,且|
PQ
|=|
PF2
|.
(1)求點(diǎn)Q的軌跡C的方程;
(2)是否存在斜率為1的直線l,使直線l與曲線C的兩個(gè)交點(diǎn)A、B滿足AF2⊥BF2?若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的方程為
x2
a2
+
y2
b2
=1(a>b>0),其離心率為
1
2
,經(jīng)過(guò)橢圓焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l:y=kx+m(|k|≤
1
2
)與橢圓C交于A、B兩點(diǎn),P為橢圓上的點(diǎn),O為坐標(biāo)原點(diǎn),且滿足
OP
=
OA
+
OB
,求|
OP
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若拋物線y2=4x的焦點(diǎn)與橢圓的右焦點(diǎn)重合,橢圓與軸的上半軸交于點(diǎn)B2,與軸的右半軸交于點(diǎn)A2,橢圓的左、右焦點(diǎn)為F1、F2,且3|
F1B2
|cos∠B2F1F2=
3
|
OB2
|
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)D(0,2)的直線,斜率為k(k>0),與橢圓交于M,N兩點(diǎn).
(i)若M,N的中點(diǎn)為H,且存在非零實(shí)數(shù),使得
OH
A2B2
,求出斜率k的值;
(ii)在軸上是否存在點(diǎn)Q(m,0),使得以QM,QN為鄰邊的四邊形是個(gè)菱形?若存在求出m的范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)離心率為
1
2
,短軸長(zhǎng)為2,直線l:y=x+m,
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線l與橢圓有公共點(diǎn)時(shí),求實(shí)數(shù)m的取值范圍;
(3)若直線l過(guò)橢圓右焦點(diǎn),并與橢圓交于A、B兩點(diǎn),求弦AB之長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn=2-(
2
n
+1)an(n∈N+).
(Ⅰ)求證:數(shù)列{
an
n
}是等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{2n+1an+1}的前n項(xiàng)和為T(mén)n,求
1
T1
+
1
T2
+
1
T3
+…+
1
Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+xlnx(a∈R)的圖象在點(diǎn)(1,f(1))處的切線與直線x+3y=0垂直.
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求證:當(dāng)n>m>0時(shí),lnn-lnm>
m
n
-
n
m
;
(Ⅲ)若存在k∈Z,使得f(x)>k恒成立,求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a4=16,S5=60.?dāng)?shù)列{an}的前n項(xiàng)和為T(mén)n,且Tn-2bn+3=0,n∈N*
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=
an(n為奇數(shù))
1
6
anbn(n為偶數(shù))
,求數(shù)列{cn}的前2n+1項(xiàng)和P2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)圓柱形的容器內(nèi)放置了一個(gè)與底面與側(cè)面都相切的玻璃球,在這個(gè)玻璃球的上面放置了三個(gè)半徑為2的小玻璃珠,它們兩兩相切,且與大玻璃球及容器的側(cè)面都相切,在小玻璃球面上任意取一點(diǎn)M,則點(diǎn)M到圓柱底面的距離的最大值是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案