函數(shù)y=-x2+2x+3的圖象的頂點(diǎn)坐標(biāo)是(  )
A、(-1,4)
B、(-1,-4)
C、(1,-4)
D、(1,4)
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)已知中的函數(shù)解析式,直接利用頂點(diǎn)公式求解即可頂點(diǎn)坐標(biāo).
解答: 解:∵函數(shù)y=-x2+2x+3中,
a=-1,b=2,c=3,
-
b
2a
=1,
4ac-b2
4a
=4,
即函數(shù)y=-x2+2x+3的圖象的頂點(diǎn)坐標(biāo)是(1,4),
故選:D
點(diǎn)評:主要考查了二次函數(shù)的圖象和性質(zhì),熟練掌握求拋物線的頂點(diǎn)坐標(biāo)、對稱軸的方法,是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用總長為18m的鋼條制作一個(gè)長方體容器的框架,若所制作容器的底面的相鄰兩邊長之比為2:1,那么容器容積最大時(shí),高為
 
m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)U=R,M={x|x<0},N={x|-1≤x≤1},則(∁UM)∩N是( 。
A、{x|0<x≤1}
B、{x|0≤x≤1}
C、{x|-1≤x<0}
D、{x|x≥-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(x2+6x,5x),
b
=(
1
3
x,1-x),已知f(x)=
a
b
,則f′(2)=( 。
A、-3B、-1C、0D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
log2|x-1|   (x≠1)
2        (x=1)
,若關(guān)于x的方程f2(x)+bf(x)+c=0(b,c∈R)恰有5個(gè)不同的實(shí)數(shù)解xi(i=1,2,3,4,5),則f(
5
i=1
xi)的值為( 。
A、8B、5C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

O為平面中一定點(diǎn),動(dòng)點(diǎn)P在A、B、C三點(diǎn)確定的平面內(nèi)且滿足(
OP
-
OA
)•(
AB
-
AC
)=0,則點(diǎn)P的軌跡一定過△ABC的(  )
A、外心B、內(nèi)心C、垂心D、 重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=r2在點(diǎn)(x0,y0)處的切線方程為x0x+y0y=r2,類似地,可以求得橢圓
x2
32
+
y2
8
=1在(4,2)處的切線方程為( 。
A、
x
4
+
y
8
=0
B、
x
4
+
y
8
=1
C、
x
8
+
y
4
=1
D、
x
8
+
y
4
=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式2x-1>m(x2-1)對滿足|m|≤2的所有實(shí)數(shù)m都成立,則實(shí)數(shù)x的取值范圍是(  )
A、(
7
-1
2
,
3
+1
2
B、(
-
3
+1
2
,
7
+1
2
C、(
-
3
+1
2
3
+1
2
D、(
7
-1
2
7
+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2+1是( 。
A、奇函數(shù),且在(0,1)上是增加的
B、奇函數(shù),且在(0,1)上是減少的
C、偶函數(shù),且在(0,1)上是增加的
D、偶函數(shù),且在(0,1)上是減少的

查看答案和解析>>

同步練習(xí)冊答案