16.下面給出的命題中:
①已知函數(shù)f(a)=$\int_0^a{cosx}$dx,則f($\frac{π}{2}}$)=1;
②“m=-2”是“直線(m+2)x+my+1=0與直線(m-2)x+(m+2)y-3=0相互垂直”的必要不充分條件;
③已知隨機變量ξ服從正態(tài)分布 N(0,σ2),且 P(-2≤ξ≤0)=0.4,則 P(ξ>2)=0.2;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則這兩圓恰有2條公切線.
其中真命題的個數(shù)是(  )
A.1B.2C.3D.4

分析 ①根據(jù)函數(shù)的積分公式進行求解.
②根據(jù)直線垂直的等價條件以及充分條件和必要條件的定義進行判斷,
③根據(jù)正態(tài)分布的性質(zhì)進行判斷,
④根據(jù)兩圓位置關(guān)系判斷兩圓相交即可.

解答 解:①已知函數(shù)f(a)=$\int_0^a{cosx}$dx,則f($\frac{π}{2}}$)=∫${\;}_{0}^{\frac{π}{2}}$cosxdx=sinx|∫${\;}_{0}^{\frac{π}{2}}$=sin$\frac{π}{2}$-sin0=1;故①正確,
②若m=-2,則兩直線等價為-2y+1=0與直線-4x-3=0,此時兩直線相互垂直,即充分性成立,故②錯誤;
③已知隨機變量ξ服從正態(tài)分布 N(0,σ2),且 P(-2≤ξ≤0)=0.4,則 P(0≤ξ≤2)=P(-2≤ξ≤0)=0.4,則 P(ξ>2)=0.5-P(0≤ξ≤2)=0.5-0.4=0.1;故③錯誤,
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,則兩圓的標準方程為(x+1)2+y2=1,⊙C2:x2+(y+1)2=2,
圓心分別為C1(-1,0),C2(0,-1),半徑分別為r=1,R=$\sqrt{2}$,
則|C1C2|=$\sqrt{1+1}$=$\sqrt{2}$,
則$\sqrt{2}-1$<|C1C2|<$\sqrt{2}+1$,即兩圓相交,則這兩圓恰有2條公切線.故④正確,
故正確的是①④,
故選:B

點評 本題主要考查命題的真假判斷,涉及知識點較多,綜合性較強,但難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)在一個周期內(nèi)的圖象如圖所示,則函數(shù)的解析式為f(x)=2sin($\frac{1}{2}$x+$\frac{π}{4}$)..直線y=$\sqrt{3}$與函數(shù)y=f(x)(x∈R)圖象的所有交點的坐標為($\frac{π}{6}$+4kπ,$\sqrt{3}$)或($\frac{5π}{6}$+4kπ,$\sqrt{3}$)(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x、y滿足約束條件$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+3y≤6\end{array}\right.$,若z=log2(2x+y+2)的最大值為( 。
A.8B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某校高一年級學(xué)生全部參加了體育科目的達標測試,現(xiàn)從中隨機抽取40名學(xué)生的測試成績,整理數(shù)據(jù)并按分數(shù)段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]進行分組,假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替(如分數(shù)段[70,80)用數(shù)值75代替),則得到體育成績的折線圖(如圖).

(I)從體育成績在[60,70)和[80,90)的樣本學(xué)生中隨機抽取2人,求在抽取的2名學(xué)生中,至少有1人體育成績在[60,70)的概率.
(II)體育成績大于或等于70分的學(xué)生被稱為“體育良好”.從高一年級全體學(xué)生中隨機抽取4人,其中“體育良好”的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=2sin(ωx+$\frac{π}{6}}$)(ω>0)與函數(shù)g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}}$)的對稱軸完全相同,則φ=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ln$\frac{x}{a}$,曲線y=f(x)在(1,f(1))處的切線方程為x-y-1=0.
(1)求實數(shù)a的值;
(2)設(shè)h(x)=f(x)-ex(e為自然對數(shù)的底數(shù)),h'(x)表示h(x)的導(dǎo)函數(shù),求證:對于h(x)的圖象上不同兩點 A(x1,y1),B(x2,y2),x1<x2,存在唯一的x0∈(x1,x2),使直線AB的斜率等于h'(x0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知定義在(-∞,+∞) 上的函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x.x≥0}\\{f(x+2),x<0}\end{array}\right.$,則方程f(x)+1=log4|x|的實數(shù)解的個數(shù)是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC的三內(nèi)角A,B,C所對的邊分別是a,b,c,△ABC的面積S=$\frac{{{a^2}+{b^2}-{c^2}}}{4}$且sinA=$\frac{3}{5}$.
(1)求sinB;
(2)若邊c=5,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖1是一個正三棱柱被平面A1B1C1截得的幾何體,其中AB=2,AA1=3,BB1=2,CC1=1,幾何體的俯視圖如圖2,則該幾何體的正視圖是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案