14.我國(guó)明朝著名數(shù)學(xué)家程大位在其名著《算法統(tǒng)宗》中記載了如下數(shù)學(xué)問(wèn)題:“遠(yuǎn)看巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請(qǐng)問(wèn)尖頭幾盞燈”.詩(shī)中描述的這個(gè)寶塔古稱浮屠,本題說(shuō)它一共有7層,每層懸掛的紅燈數(shù)是上一層的2倍,共有381盞燈,那么塔頂有( 。┍K燈.
A.2B.3C.5D.6

分析 設(shè)頂層有x盞燈根據(jù)題意得:x+2x+4x+8x+16x+32x+64x=381,由此能求出結(jié)果.

解答 解:設(shè)頂層有x盞燈
根據(jù)題意得:x+2x+4x+8x+16x+32x+64x=381
解得:x=3.
因此尖頭(最頂層)有3盞燈.
故選:B.

點(diǎn)評(píng) 本題考查等比數(shù)列的首項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖所示,橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1的左,右頂點(diǎn)分別為A,A′,線段CD是垂直于橢圓長(zhǎng)軸的弦,連接AC,DA′相交于點(diǎn)P,則點(diǎn)P的軌跡方程為$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知拋物線的方程為y2=2mx(m>0),焦點(diǎn)坐標(biāo)為(1,0),則m等于( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{8+\frac{a}}=8\sqrt{\frac{a}}$,則a、b的值分別是63,8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}滿足a1=$\frac{3}{7}$,an+1=$\frac{3{a}_{n}}{4{a}_{n}+1}$,n∈N+
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$-2}是等比數(shù)列,并且求出數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{$\frac{n}{{a}_{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若sin(θ-$\frac{π}{6}$)=$\frac{1}{4}$,$θ∈({\frac{π}{6},\frac{2π}{3}})$,則$cos({\frac{3π}{2}+θ})$的值為( 。
A.$\frac{{\sqrt{15}+\sqrt{3}}}{8}$B.$\frac{{\sqrt{15}-\sqrt{3}}}{8}$C.$\frac{{-\sqrt{15}+\sqrt{3}}}{8}$D.$\frac{{-\sqrt{15}-\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知?ABCD的三個(gè)頂點(diǎn)的坐標(biāo)分別是A(0,1),B(1,0),C(4,3),則頂點(diǎn)D的坐標(biāo)為( 。
A.(3,4)B.(4,3)C.(3,1)D.(3,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若x,y滿足$\left\{{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{y≥0}\end{array}}\right.$,則z=x+2y的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.給出下列說(shuō)法:
①冪函數(shù)的圖象一定不過(guò)第四象限;
②奇函數(shù)圖象一定過(guò)坐標(biāo)原點(diǎn);
③已知函數(shù)y=f(x+1)的定義域?yàn)閇1,2],則函數(shù)y=f(2x)的定義域?yàn)閇2,3];
④定義在R上的函數(shù)f(x)對(duì)任意兩個(gè)不等實(shí)數(shù)a、b,總有$\frac{f(a)-f(b)}{a-b}>0$成立,則f(x)在R上是增函數(shù);
⑤$f(x)=\frac{1}{x}$的單調(diào)減區(qū)間是(-∞,0)∪(0,+∞);
正確的有①④.

查看答案和解析>>

同步練習(xí)冊(cè)答案