4.設(shè)點(diǎn)P是雙曲線$\frac{x^2}{4}-{y^2}=1$上的點(diǎn),F(xiàn)1,F(xiàn)2是其焦點(diǎn),且∠F1PF2=90°,則△F1PF2的面積是( 。
A.4B.5C.1D.2

分析 由條件可得||PF1|-|PF2||=2a,由題意可知△F1PF2為直角三角形利用勾股定理,結(jié)合雙曲線的定義,即可求出△PF1F2的面積.

解答 解:由條件可得||PF1|-|PF2||=4,由題意可知△F1PF2為直角三角形,
設(shè)雙曲線的焦距為2$\sqrt{5}$,則|PF1|2+|PF2|2=|F1F2|2=20,b2=1,
故(|PF1|-|PF2|)2+2|PF1|•|PF2|=|F1F2|2=20,即16+2|PF1|•|PF2|=20,
故|PF1|•|PF2|=2,
故△PF1F2的面積為$\frac{1}{2}$|PF1|•|PF2|=1.
故選:C.

點(diǎn)評(píng) 本題考查雙曲線的定義與性質(zhì),考查三角形面積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年新疆庫(kù)爾勒市高二上學(xué)期分班考試數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

函數(shù)的定義域是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求下列極限:
(1)$\underset{lim}{x→1}$$\sqrt{{x}^{2}+2}$;
(2)$\underset{lim}{x→\frac{π}{4}}$(sinx-cosx);
(3)$\underset{lim}{x→1}$cos lnx;
(4)$\underset{lim}{x→0}$esinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在數(shù)列{an}中,a1=1,a2=2,其前n項(xiàng)和為Sn,且{Sn}成等比數(shù)列,則a5=54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.有一名同學(xué)家開了一個(gè)小賣部,他為了研究氣溫對(duì)某種引領(lǐng)銷售的影響,記錄了2015年7月至12月每月15號(hào)下午14時(shí)的氣溫和當(dāng)天賣出的飲料杯數(shù),得到如下資料:
日期7月15日8月15日9月15日10月15日11月15日12月15日
攝氏溫度x(℃)36353024188
飲料杯數(shù)y27292418155
該同學(xué)確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選中的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取2組數(shù)據(jù)恰好是相鄰的兩個(gè)月的概率;
(2)若選中的是8月與12月的兩組數(shù)據(jù),根據(jù)剩下的4組數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\hat y=bx+\hat a$.
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線$\hat a=\overline y-\hat b\overline x$的斜率和截距的最小二乘估計(jì)分別為:$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,在一次自行車越野賽中,甲,乙兩名選手所走的路程y(千米)隨時(shí)間x(分鐘)變化的圖象(全程)分別用實(shí)線(O→A→B→C)與虛線( OD)表示,那么,在本次比賽過程中,乙領(lǐng)先甲時(shí)的x的取值范圍是0<x<38.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-1,x≥1}\\{1,x<1}\end{array}\right.$,則不等式f(6-x2)>f(x)的解集為(  )
A.(-3,1)B.(-2,1)C.(-$\sqrt{5}$,2)D.(-2,$\sqrt{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知等比數(shù)列{an}為遞增數(shù)列,其前n項(xiàng)和為Sn,若a3=8,S3=${∫}_{0}^{2}$(4x+3)dx,則公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在△ABC中,∠B=30°,AC=$\sqrt{5}$,D是邊AB上一點(diǎn).
(1)求△ABC面積的最大值;
(2)若CD=2,△ACD的面積為2,∠ACD為銳角,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案