已知函數(shù)f(x)=ax2+bx+c,其中a∈N*,b∈N,c∈Z。
(1)若b>2a,且f(sinx)(x∈R)的最大值為2,最小值為-4,試求函數(shù)f(x)的最小值;
(2)若對任意實數(shù)x,不等式4x≤f(x)≤2(x2+1)恒成立,且存在x0,使得f(x0)<2(x02+1)成立,求c的值。
(1)f(x)=x2+3x-2,最小值為-17/4。
(2)c=1。
(1)由函數(shù)f(x)的圖像開口向上,對稱軸x=-b/2a<-1知,f(x)在[-1,1]上為增函數(shù),故f(1)=a+b+c=2,f(-1)=a-b+c=-4,∴b=3,a+c=-1。又b>2a,故a=1,c=-2。∴f(x)=x2+3x-2,最小值為-17/4。
(2)令x=1,代入不等式4x≤f(x)≤2(x2+1)得f(1)=4,即a+b+c=4,從而b=4-a-c。又4x≤f(x)恒成立,得ax2+(b-4)x+c≥0恒成立,故△=(b-4)2-4ac≤0,∴a=c。又b≥0,a+c≤4,∴c=1或c=2。當(dāng)c=2時,f(x)=2x2+2,此時不存在滿足題意的x0。當(dāng)c=1時滿足條件,故c=1。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


已知二次函數(shù)
直線l2與函數(shù)的圖象以及直線l1l2與函數(shù)的圖象所圍成的封閉圖形如圖中陰影所示,設(shè)這兩個陰影區(qū)域的面積之和為
(I)求函數(shù)的解析式;
(II)定義函數(shù)的三條切線,求實數(shù)m的取值范圍。


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)處的切線方程為,求的值;
(2)若函數(shù)為增函數(shù),求的取值范圍;
(3)討論方程解的個數(shù),并說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一根彈簧,掛的物體時,長20 cm.在彈性限度內(nèi),所掛物體的重量每增加,彈簧就伸長cm.試寫出彈簧的長度(cm)與所掛物體重量之間的關(guān)系的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)的定義域是(是正整數(shù)),那么的值域中共有       個整數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若函數(shù)f(x)=(a2+4a-5)x2-4(a-1)x+3的圖象恒在x軸上方,則a的取值范圍是( 。
A.[1,+∞)B.(1,19)C.[1,19)D.(-1,19]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)=
(1)求證:函數(shù)y=f(x)與g(x)的圖像有兩個交點;
(2)設(shè)f(x)與g(x)的圖交點A、B在x軸上的射影為的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),則實數(shù)a的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個用鮮花做成的花柱,它的下面是一個直徑為2m、高為4m的圓柱形物體,上面是一個半球形體,如果每平方米大約需要鮮花200朵,那么裝飾這個花柱大約需要多少朵鮮花(取3.1)?

查看答案和解析>>

同步練習(xí)冊答案