【題目】已知函數(shù)在處的切線方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程f(x)=kex(其中e為自然對數(shù)的底數(shù))恰有兩個不同的實根,求實數(shù)的值.
【答案】(1)(2)或
【解析】
(1)求出原函數(shù)的導(dǎo)函數(shù),依題意,,得到關(guān)于a,b的不等式組,求得a,b的值,則函數(shù)解析式可求;
(2)方程f(x)=kex,即x2﹣x+1=kex,得k=(x2﹣x+1)e﹣x,記F(x)=(x2﹣x+1)e﹣x,利用導(dǎo)數(shù)求其極值,可知當(dāng)k或k時,它們有兩個不同交點,因此方程f(x)=kex恰有兩個不同的實根;
(1)f(x)=ax2+bx+1,,
依題設(shè),有,即,
解得,∴.
(2)方程f(x)=kex,即x2﹣x+1=kex,,可化為,
記,則,
令,得,
當(dāng)變化時,、的變化情況如下表:
- | + | - | |||
↘ | 極小 | ↗ | 極大 | ↘ |
所以當(dāng)時,取極小值;當(dāng)時,取極大值,
又時,,且;
時,,
可知當(dāng)k或k時,它們有兩個不同交點,因此方程f(x)=kex恰有兩個不同的實根;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓中心在原點,焦點在坐標(biāo)軸上,直線與橢圓在第一象限內(nèi)的交點是,點在軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.
(1)求橢圓的方程;
(2)直線過點,且與橢圓交于兩點,求的內(nèi)切圓面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點和直線,直線過直線上的動點且與直線垂直,線段的垂直平分線與直線相交于點
(I)求點的軌跡的方程;
(II)設(shè)直線與軌跡相交于另一點,與直線相交于點,求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若,令,若,是的兩個極值點,且,求正實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費和年銷售量()的數(shù)據(jù)作了初步統(tǒng)計,得到如下數(shù)據(jù):
年份 | ||||||
年宣傳費(萬元) | ||||||
年銷售量(噸) |
經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(萬元)與年銷售量(噸)之間近似滿足關(guān)系式().對上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:
(1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;
(2)已知這種產(chǎn)品的年利潤與,的關(guān)系為若想在年達(dá)到年利潤最大,請預(yù)測年的宣傳費用是多少萬元?
附:對于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知數(shù)列:1,,,3,3,3,,,,,…,,即當(dāng)()時,,記().
(1)求的值;
(2)求當(dāng)(),試用n、k的代數(shù)式表示();
(3)對于,定義集合是的整數(shù)倍,,且,求集合中元素的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)的單調(diào)遞減區(qū)間;
(2)求函數(shù)在區(qū)間上的最大值及最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com