【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需了解年宣傳費(fèi)(單位:萬元)對(duì)年銷售量(單位:噸)和年利潤(rùn)(單位:萬元)的影響.對(duì)近六年的年宣傳費(fèi)和年銷售量)的數(shù)據(jù)作了初步統(tǒng)計(jì),得到如下數(shù)據(jù):

年份

年宣傳費(fèi)(萬元)

年銷售量(噸)

經(jīng)電腦模擬,發(fā)現(xiàn)年宣傳費(fèi)(萬元)與年銷售量(噸)之間近似滿足關(guān)系式).對(duì)上述數(shù)據(jù)作了初步處理,得到相關(guān)的值如表:

1)根據(jù)所給數(shù)據(jù),求關(guān)于的回歸方程;

2)已知這種產(chǎn)品的年利潤(rùn),的關(guān)系為若想在年達(dá)到年利潤(rùn)最大,請(qǐng)預(yù)測(cè)年的宣傳費(fèi)用是多少萬元?

附:對(duì)于一組數(shù)據(jù),…,,其回歸直線中的斜率和截距的最小二乘估計(jì)分別為

【答案】(1)(2)當(dāng)2018年的宣傳費(fèi)用為98萬元時(shí),年利潤(rùn)有最大值.

【解析】

1)轉(zhuǎn)化方程,結(jié)合線性回歸方程參數(shù)計(jì)算公式,計(jì)算,即可。(2)將z函數(shù)轉(zhuǎn)化為二次函數(shù),計(jì)算最值,即可。

(1)對(duì),(),兩邊取對(duì)數(shù)得

,,得,

由題目中的數(shù)據(jù),計(jì)算,

,

,

得出,

所以關(guān)于的回歸方程是

(2)由題意知這種產(chǎn)品的年利潤(rùn)z的預(yù)測(cè)值為

,

所以當(dāng),即時(shí),取得最大值,

即當(dāng)2019年的年宣傳費(fèi)用是萬元時(shí),年利潤(rùn)有最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的極小值;

(2)求證:當(dāng)時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若數(shù)列,求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

1)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;

2)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中華人民共和國(guó)民法總則》(以下簡(jiǎn)稱《民法總則》)自2017年10月1日起施行。作為民法典的開篇之作,《民法總則》與每個(gè)人的一生息息相關(guān).某地區(qū)為了調(diào)研本地區(qū)人們對(duì)該法律的了解情況,隨機(jī)抽取50人,他們的年齡都在區(qū)間[25,85]上,年齡的頻率分布及了解《民法總則》的人數(shù)如下表:

年齡

[25,35)

[3545)

[45,55)

[5565)

[65,75)

[7585)

頻數(shù)

5

5

10

15

5

10

了解《民法總則》

1

2

8

12

4

5

(Ⅰ)填寫下面2×2 列聯(lián)表,并判斷是否有99%的把握認(rèn)為以45歲為分界點(diǎn)對(duì)了解《民法總則》政策有差異;

(Ⅱ)若對(duì)年齡在[45,55),[65,75)的被調(diào)研人中各隨機(jī)選取2人進(jìn)行深入調(diào)研,記選中的4人中不了解《民法總則》的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿足函數(shù): ,其中是儀器的月產(chǎn)量.(注:總收益=總成本+利潤(rùn))

(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù);

(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知半徑為1的動(dòng)圓與定圓(x-5)2+(y+7)2=16相切,則動(dòng)圓圓心的軌跡方程是(  )

A. (x-5)2+(y+7)2=25

B. (x-5)2+(y+7)2=3或(x-5)2+(y+7)2=15

C. (x-5)2+(y+7)2=9

D. (x-5)2+(y+7)2=25或(x-5)2+(y+7)2=9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù),.

(1)討論函數(shù)的單調(diào)性;

(2)若處取得極大值,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案