分析 (1)將直線y=x+$\sqrt{3}$代入橢圓方程,得到x的方程,由直線和橢圓相切的條件:判別式為0,解方程可得a的值;
(2)①設(shè)切點A(x1,y1),B(x2,y2),可得切線l1:x1x+2y1y=2,l2:x2x+2y2y=2,再由M代入上式,結(jié)合兩點確定一條直線,可得切點弦方程,即有AB的斜率,結(jié)合兩點的斜率公式,即可得證;
②由①可得AB的方程為x+my=1,運用點到直線的距離公式和直線與橢圓方程聯(lián)立,運用韋達定理和弦長公式,求得△OAB的面積,化簡整理,運用基本不等式即可得到所求最大值.
解答 解:(1)將直線y=x+$\sqrt{3}$代入橢圓方程x2+a2y2=a2,
可得(1+a2)x2+2$\sqrt{3}$a2x+2a2=0,
由直線和橢圓相切,可得
△=12a4-4(1+a2)•2a2=0,
解得a=$\sqrt{2}$(由a>1);
(2)①證明:設(shè)切點A(x1,y1),B(x2,y2),
可得切線l1:x1x+2y1y=2,
l2:x2x+2y2y=2,
由l1與l2交于點M(2,m),可得
2x1+2my1=2,2x2+2my2=2,
由兩點確定一條直線,可得AB的方程為2x+2my=2,
即為x+my=1,
即有k1=-$\frac{1}{m}$,k2=$\frac{m}{2}$,可得k1k2為定值-$\frac{1}{2}$;
②由①可得AB的方程為x+my=1,
原點到直線AB的距離為d=$\frac{1}{\sqrt{1+{m}^{2}}}$,
由$\left\{\begin{array}{l}{x+my=1}\\{{x}^{2}+2{y}^{2}=2}\end{array}\right.$消去x,可得(2+m2)y2-2my-1=0,
y1+y2=$\frac{2m}{2+{m}^{2}}$,y1y2=-$\frac{1}{2+{m}^{2}}$,
可得|AB|=$\sqrt{1+{m}^{2}}$•$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{1+{m}^{2}}$•$\sqrt{\frac{8(1+{m}^{2})}{(2+{m}^{2})^{2}}}$=$\frac{2\sqrt{2}(1+{m}^{2})}{2+{m}^{2}}$,
可得△OAB的面積S=$\frac{1}{2}$d|AB|=$\sqrt{2}$•$\frac{\sqrt{1+{m}^{2}}}{2+{m}^{2}}$,
設(shè)t=$\sqrt{1+{m}^{2}}$(t≥1),
S=$\frac{\sqrt{2}t}{1+{t}^{2}}$=$\frac{\sqrt{2}}{t+\frac{1}{t}}$≤$\frac{\sqrt{2}}{2}$,
當且僅當t=1即m=0時,S取得最大值$\frac{\sqrt{2}}{2}$.
點評 本題考查直線和橢圓的位置關(guān)系的判斷,考查直線和橢圓相切的條件:判別式為0,以及切線的方程的運用,同時考查直線和橢圓相交的弦長公式和三角形的面積的最值的求法,注意運用基本不等式,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{5}$ | B. | -$\frac{3}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 3 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{5π}{3}$,2π] | B. | [$\frac{4π}{3}$,2π] | C. | [$\frac{4π}{3}$,$\frac{8π}{3}$] | D. | [2π,$\frac{8π}{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com