【題目】如圖,四棱錐M-ABCD中,MB⊥平面ABCD,四邊形ABCD是矩形,AB=MB,E、F分別為MA、MC的中點.

(1)求證:平面BEF⊥平面MAD;

(2)若,求三棱錐E-ABF的體積.

【答案】(1)見解析;(2)

【解析】

(1)先證明BE⊥平面MAD,再證平面BEF⊥平面MAD;(2)利用體積變換求三棱錐E-ABF的體積.

(1)因為MB⊥平面ABCD,所以MB⊥AD,

又因為四邊形ABCD是矩形,所以AD⊥AB,

因為AB∩MB=B,所以AD⊥平面MAB,

因為BE平面MAB,所以AD⊥BE,

又因為AB=MB,E為MA的中點,

所以BE⊥MA,因為MA∩AD=A,

所以BE⊥平面MAD,

又因為BE平面BEF,

所以平面BEF⊥平面MAD.

(2)因為AD∥BC,所以BC⊥面MAB,又因為F為MC的中點,

所以F到面MAB的距離,

又因為MB⊥平面ABCD,AB=MB=,E為MA的中點,

所以

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)一動點)到點的距離與點軸的距離的差等于1,

1)求動點的軌跡的方程;

2)過點的直線與軌跡相交于不同于坐標(biāo)原點的兩點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家統(tǒng)計局進行第四次經(jīng)濟普查,某調(diào)查機構(gòu)從15個發(fā)達地區(qū),10個欠發(fā)達地區(qū),5個貧困地區(qū)中選取6個作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).普查過程中首先要進行宣傳培訓(xùn),然后確定對象,最后入戶登記,由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點經(jīng)驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經(jīng)營戶,普查情況如下表所示:

普查對象類別

順利

不順利

合計

企事業(yè)單位

40

10

50

個體經(jīng)營戶

90

60

150

合計

130

70

200

(1)寫出選擇6個國家綜合試點地區(qū)采用的抽樣方法;

(2)根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”,分析造成這個結(jié)果的原因并給出合理化建議.

附:參考公式: ,其中

參考數(shù)據(jù):

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】梯形中,,矩形所在平面與平面垂直,且.

1)求證:平面平面;

2)若P為線段上一點,且異面直線所成角為45°,求平面與平面所成銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xex-alnx(無理數(shù)e=2.718…).

(1)若f(x)在(0,1)單調(diào)遞減,求實數(shù)a的取值范圍;

(2)當(dāng)a=-1時,設(shè)g(x)=x(f(x)-xex)-x3+x2-b,若函數(shù)g(x)存在零點,求實數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)站針對“2014年法定節(jié)假日調(diào)休安排展開的問卷調(diào)查,提出了A、B、C三種放假方案,調(diào)查結(jié)果如下:


支持A方案

支持B方案

支持C方案

35歲以下

200

400

800

35歲以上(含35歲)

100

100

400

1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個人,已知從支持A方案的人中抽取了6人,求n的值;

2)在支持B方案的人中,用分層抽樣的方法抽取5人看作一個總體,從這5人中任意選取2人,求恰好有1人在35歲以上(含35歲)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個圓錐的體積為,當(dāng)這個圓錐的側(cè)面積最小時,其母線與底面所成角的正切值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學(xué)和英語是考生的必考科目,考生還須從物理、化學(xué)、生物、歷史、地理和政治六個科目中選取三個科目作為選考科目.若一名學(xué)生從六個科目中選出了三個科目作為選考科目,則稱該學(xué)生的選考方案確定;否則,稱該學(xué)生選考方案待確定.例如,學(xué)生甲選擇“物理、化學(xué)和生物”三個選考科目,則學(xué)生甲的選考方案確定,“物理、化學(xué)和生物”為其選考方案.

某學(xué)校為了了解高一年級420名學(xué)生選考科目的意向,隨機選取30名學(xué)生進行了一次調(diào)查,統(tǒng)計選考科目人數(shù)如下表:

性別

選考方案確定情況

物理

化學(xué)

生物

歷史

地理

政治

男生

選考方案確定的有6人

6

6

3

1

2

0

選考方案待確定的有8人

5

4

0

1

2

1

女生

選考方案確定的有10人

8

9

6

3

3

1

選考方案待確定的有6人

5

4

0

0

1

1

(Ⅰ)試估計該學(xué)校高一年級確定選考生物的學(xué)生有多少人?

(Ⅱ)寫出選考方案確定的男生中選擇“物理、化學(xué)和地理”的人數(shù).(直接寫出結(jié)果)

(Ⅲ)從選考方案確定的男生中任選2名,試求出這2名學(xué)生選考科目完全相同的概率.

查看答案和解析>>

同步練習(xí)冊答案