精英家教網 > 高中數學 > 題目詳情

【題目】國家統(tǒng)計局進行第四次經濟普查,某調查機構從15個發(fā)達地區(qū),10個欠發(fā)達地區(qū),5個貧困地區(qū)中選取6個作為國家綜合試點地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗,在某普查小區(qū),共有50家企事業(yè)單位,150家個體經營戶,普查情況如下表所示:

普查對象類別

順利

不順利

合計

企事業(yè)單位

40

10

50

個體經營戶

90

60

150

合計

130

70

200

(1)寫出選擇6個國家綜合試點地區(qū)采用的抽樣方法;

(2)根據列聯(lián)表判斷是否有97.5%的把握認為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關”,分析造成這個結果的原因并給出合理化建議.

附:參考公式: ,其中

參考數據:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.455

0.708

1.323

2.072

2.706

3.841

5.024

【答案】(1) 分層抽樣(2)見解析

【解析】

(1)由分層抽樣的定義與特點結合題意確定為分層抽樣;(2)計算的值即可進行判斷,再分析原因給出建議即可

(1)分層抽樣

(2)由列聯(lián)表中的數據可得的觀測值

所以有97.5%的把握認為“此普查小區(qū)的入戶登記”是否順利與普查對象類別有關

原因:1.居民對普查不夠重視, 不愿意積極配合;

2.企事業(yè)單位工作時間固定,個體經營者相對時間不固定

建議:1.要加大宣傳力度,宣傳要貼近居民生活,易被居民接受;

2.合理的安排普查時間,要結合居民工作特點.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為AB的中點,P為以A為圓心、AB為半徑的圓弧上的任意一點,設向量=λ+μ,則λ+μ的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)求不等式的解集;

(2)若直線的圖象所圍成的多邊形面積為,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,點上且其橫坐標為1,以為圓心、為半徑的圓與的準線相切.

(1)求的值;

(2)過點的直線交于,兩點,以為鄰邊作平行四邊形,若點關于的對稱點在上,求的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知關于x的不等式的解集為

(1)求a,b的值.

(2)當時,解關于x的不等式

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)兩個共軛復數的差是純虛數;(2)兩個共軛復數的和不一定是實數;(3)若復數是某一元二次方程的根,則是也一定是這個方程的根;(4)若為虛數,則的平方根為虛數,其中正確的個數為 ( )

A.3B.2C.1D.0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】動圓與圓相外切且與軸相切,則動圓的圓心的軌跡記

1)求軌跡的方程;

2)定點到軌跡(1上任意一點的距離的最小值;

3)經過定點的直線,試分析直線與軌跡的公共點個數,并指明相應的直線的斜率是否存在,若存在求的取值或取值范圍情況.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐M-ABCD中,MB⊥平面ABCD,四邊形ABCD是矩形,AB=MB,E、F分別為MA、MC的中點.

(1)求證:平面BEF⊥平面MAD;

(2)若,求三棱錐E-ABF的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為菱形,,,且.

(1)求證:平面平面

(2)若,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案