7.在所有的兩位數(shù)(10~99)中,任取一個(gè)數(shù),則這個(gè)數(shù)能被2或3整除的概率是$\frac{2}{3}$.

分析 先求出基本事件總數(shù)n=90,再求出這個(gè)數(shù)能被2或3整除包含的基本事件個(gè)數(shù)m=45+30-15=60,由此能求出這個(gè)數(shù)能被2或3整除的概率.

解答 解:在所有的兩位數(shù)(10~99)中,任取一個(gè)數(shù),基本事件總數(shù)n=90,
這個(gè)數(shù)能被2或3整除包含的基本事件個(gè)數(shù)m=45+30-15=60,
∴這個(gè)數(shù)能被2或3整除的概率是p=$\frac{m}{n}$=$\frac{2}{3}$.
故答案為:$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等可能事件概率計(jì)算公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“雙曲線漸近線方程為y=±2x”是“雙曲線方程為x2-$\frac{{y}^{2}}{4}$=λ(λ為常數(shù)且λ≠0)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某人的手機(jī)使用的是每月300M流量套餐,如圖記錄了某人在去年1月到12月的流量使用情況.其中橫軸代表月份,縱軸代表流量.
(Ⅰ)若在一年中隨機(jī)取一個(gè)月的流量使用情況,求使用流量不足180M的概率;
(Ⅱ)若從這12個(gè)月中隨機(jī)選擇連續(xù)的三個(gè)月進(jìn)行觀察,求 所選三個(gè)月的流量使用情況中,中間月的流量使用情況低于另兩月的概率;
(Ⅲ) 由折線圖判斷從哪個(gè)月開始,連續(xù)四個(gè)月的流量使用的情況方差最大.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某中學(xué)組織了一次高二文科學(xué)生數(shù)學(xué)學(xué)業(yè)水平模擬測試,學(xué)校從測試合格的男、女生中各隨機(jī)抽取100人的成績進(jìn)行統(tǒng)計(jì)分析,分別制成了如圖所示的男生和女生數(shù)學(xué)成績的頻率分布直方圖.

(Ⅰ)若所得分?jǐn)?shù)大于等于80分認(rèn)定為優(yōu)秀,求男、女生優(yōu)秀人數(shù)各有多少人?
(Ⅱ)在(Ⅰ)中的優(yōu)秀學(xué)生中用分層抽樣的方法抽取5人,從這5人中任意選取2人,求至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.不等式log2(x+6)<log2(2-x)的解集為(-6,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.衡州市臨棗中學(xué)高二某小組隨機(jī)調(diào)查芙蓉社區(qū)160個(gè)人,以研究這一社區(qū)居民在20:00-22:00時(shí)間段的休閑方式與性別的關(guān)系,得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視看書合計(jì)
20100120
202040
合計(jì)40120160
下面臨界值表:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}},n=a+b+c+d$
(Ⅰ)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書為休閑方式的人數(shù)為隨機(jī)變量X,求X的分別列和期望;
(Ⅱ)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00-22:00時(shí)間段的休閑方式與性別有關(guān)系”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若${(x+2)^2}+\frac{y^2}{4}=1$,則x2+y2的取值范圍是[1,$\frac{28}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,已知長方形ABCD中,AB=2AD,M為DC的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM.
(1)求證:AD⊥BM;
(2)若點(diǎn)E是線段DB上的中點(diǎn),四棱錐D-ABCM的體積為V,求三棱錐E-ADM的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,若輸入m=4,t=3,則輸出y=( 。
A.183B.62C.61D.184

查看答案和解析>>

同步練習(xí)冊(cè)答案