14.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$8+2\sqrt{2}$B.$8+4\sqrt{2}$C.$12+2\sqrt{2}$D.$12+4\sqrt{2}$

分析 判斷直觀圖的形狀,利用三視圖的數(shù)據(jù),求解幾何體的表面積.

解答 解:由題意可知幾何體是三棱柱,如圖:三棱柱的底面的等腰三角形,底邊為2$\sqrt{2}$,高為$\sqrt{2}$,棱柱的高為2.
幾何體的表面積為:2×$\frac{1}{2}×2\sqrt{2}×\sqrt{2}$+(2$\sqrt{2}$+2×2)×2=12+4$\sqrt{2}$.
故選:D.

點評 本題考查三視圖與直觀圖的關(guān)系,幾何體的表面積的求法,考查空間想象能力以及計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,在多面體ABCDE中,面ABED為梯形且∠BAD=∠EDA=$\frac{π}{2}$,F(xiàn)為CE的中點,AC=AD=CD=DE=AF=2,AB=1.
(1)求證:DF⊥BC;
(2)求平面BCE與平面ACD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知tan$\frac{α+β}{2}$=$\frac{\sqrt{6}}{2}$,tanαtanβ=$\frac{13}{7}$,求下列各式的值:
(1)cos(α+β);
(2)cos(α-β).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知不共線向量$\overrightarrow{a}$,$\overrightarrow$,|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$的夾角是( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知集合A={x|x+1<0},B={x|x-3<0},則∁RA∩B=(  )
A.{x|1<x<3}B.{x|-1≤x<3}C.{x|x<-1}D.{x|x>3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=4cosθ,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=t+a}\\{y=-\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t為參數(shù)),則直線l將曲線C的周長分為1:5,則實數(shù)a=-1或5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=sin4x.
(1)記g(x)=f(x)+f($\frac{π}{2}$-x),求g(x)在[$\frac{π}{6},\frac{3π}{8}$]上的最大值與最小值;
(2)求f($\frac{π}{180}$)+f($\frac{2π}{180}$)+f($\frac{3π}{180}$)+…f($\frac{88π}{180}$)+f($\frac{89π}{180}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知四棱錐P-ABCD的底面是菱形,對角線AC,BD交于點O,OA=4,OB=3,OP=4,OP⊥底面ABCD,設(shè)點M滿足$\overrightarrow{PM}$=λ$\overrightarrow{MC}$(λ>0).
(1)當λ=$\frac{1}{2}$時,求直線PA與平面BDM所成角的正弦值;
(2)若二面角M-AB-C的大小為$\frac{π}{4}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知三次函數(shù)f(x)=x3+ax2-6x+b,a,b∈R,若函數(shù)f(x)的圖象在x=1處的切線方程為12x+2y-1=0.
(1)求函數(shù)f(x)的解析式;
(2)若存在x∈(0,+∞),使得3lnx≥f′(x)+|2m-1|成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案