【題目】甲、乙兩名同學(xué)參加一項(xiàng)射擊比賽游戲,其中任何一人每射擊一次擊中目標(biāo)得2分,未擊中目標(biāo)得0分.若甲、乙兩人射擊的命中率分別為,且甲、乙兩人各射擊一次得分之和為2的概率為.假設(shè)甲、乙兩人射擊互不影響,則值為( )

A. B. C. D.

【答案】B

【解析】分析:由題意知甲、乙兩人射擊互不影響,則本題是一個(gè)相互獨(dú)立事件同時(shí)發(fā)生的概率,根據(jù)題意可設(shè)“甲射擊一次,擊中目標(biāo)”為事件A,“乙射擊一次,擊中目標(biāo)”為事件B,由相互獨(dú)立事件的概率公式可得,可得關(guān)于p的方程,解方程即可得答案.

詳解:設(shè)“甲射擊一次,擊中目標(biāo)”為事件A,“乙射擊一次,擊中目標(biāo)”為事件B,

則“甲射擊一次,未擊中目標(biāo)”為事件,“乙射擊一次,未擊中目標(biāo)”為事件,

則P(A)=,P()=1﹣=,P(B)=P,P()=1﹣P,

依題意得: ×(1﹣p)+×p=

解可得,p=,

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底而為菱形,且菱形所在的平面與所在的平面相互垂直,,,.

1)求證:平面;

2)求四棱錐的最長側(cè)棱的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為,過點(diǎn),的直線傾斜角為.

1)求橢圓的方程;

2)是否存在過點(diǎn)且斜率為的直線,使直線交橢圓于兩點(diǎn),以為直徑的圓過點(diǎn)?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;

2)若函數(shù)存在兩個(gè)零點(diǎn).

①實(shí)數(shù)的取值范圍;

②證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,過點(diǎn)的直線有兩個(gè)不同的交點(diǎn),線段的中點(diǎn)為,為坐標(biāo)原點(diǎn),直線與直線分別交直線于點(diǎn).

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)求線段的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年底,北京2022年冬奧組委會(huì)啟動(dòng)志愿者全球招募,僅一個(gè)月內(nèi)報(bào)名人數(shù)便突破60萬,其中青年學(xué)生約有50萬人.現(xiàn)從這50萬青年學(xué)生志愿者中,按男女分層抽樣隨機(jī)選取20人進(jìn)行英語水平測試,所得成績(單位:)統(tǒng)計(jì)結(jié)果用莖葉圖記錄如下:

()試估計(jì)在這50萬青年學(xué)生志愿者中,英語測試成績在80分以上的女生人數(shù);

()從選出的8名男生中隨機(jī)抽取2人,記其中測試成績在70分以上的人數(shù)為X,求的分布列和數(shù)學(xué)期望;

()為便于聯(lián)絡(luò),現(xiàn)將所有的青年學(xué)生志愿者隨機(jī)分成若干組(每組人數(shù)不少于5000),并在每組中隨機(jī)選取個(gè)人作為聯(lián)絡(luò)員,要求每組的聯(lián)絡(luò)員中至少有1人的英語測試成績在70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A與圓外切且與軸相切.

1)求圓心的軌跡的方程;

2)過作斜率為的直線交曲線,兩點(diǎn),

①若,求直線的方程;

②過,兩點(diǎn)分別作曲線的切線,求證:,的交點(diǎn)恒在一條定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中.

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)(AQI)的檢測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如表:

AQI

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

重度污染

天數(shù)

6

14

18

27

25

10

1)從空氣質(zhì)量指數(shù)屬于[0,50],(50100]的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;

2)已知某企業(yè)每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失y(單位:元)與空氣質(zhì)量指數(shù)x的關(guān)系式為,假設(shè)該企業(yè)所在地7月與8月每天空氣質(zhì)量為優(yōu)、良、輕度污染、中度污染、重度污染、嚴(yán)重污染的概率分別為.9月每天的空氣質(zhì)量對應(yīng)的概率以表中100天的空氣質(zhì)量的頻率代替.

i)記該企業(yè)9月每天因空氣質(zhì)量造成的經(jīng)濟(jì)損失為X元,求X的分布列;

ii)試問該企業(yè)7月、8月、9月這三個(gè)月因氣質(zhì)量造成的經(jīng)濟(jì)損失總額的數(shù)學(xué)期望是否會(huì)超過2.88萬元?說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案