1.“-$\frac{\sqrt{3}}{3}$<k<$\frac{\sqrt{3}}{3}$”是“直線y=k(x+1)與圓x2+y2-2x=0有公共點”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要

分析 聯(lián)立$\left\{\begin{array}{l}{y=k(x+1)}\\{{x}^{2}+{y}^{2}-2x=0}\end{array}\right.$,得(k2+1)x2+(2k2-2)x+k2=0,由此利用根的判別式能求出“-$\frac{\sqrt{3}}{3}$<k<$\frac{\sqrt{3}}{3}$”是“直線y=k(x+1)與圓x2+y2-2x=0有公共點”的充分不必要條件.

解答 解:聯(lián)立$\left\{\begin{array}{l}{y=k(x+1)}\\{{x}^{2}+{y}^{2}-2x=0}\end{array}\right.$,得(k2+1)x2+(2k2-2)x+k2=0,
由-$\frac{\sqrt{3}}{3}$<k<$\frac{\sqrt{3}}{3}$,
得△=(2k2-2)2-4k2(k2+1)=-12k2+4>0,
∴直線y=k(x+1)與圓x2+y2-2x=0有公共點;
由直線y=k(x+1)與圓x2+y2-2x=0有公共點,
得△=(2k2-2)2-4k2(k2+1)=-12k2+4≥0,
解得-$\frac{\sqrt{3}}{3}$≤k≤$\frac{\sqrt{3}}{3}$.
∴“-$\frac{\sqrt{3}}{3}$<k<$\frac{\sqrt{3}}{3}$”是“直線y=k(x+1)與圓x2+y2-2x=0有公共點”的充分不必要條件.
故選:A.

點評 本題考查命題真假的判斷,是基礎題,解題時要認真審題,注意根的判別式的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點M(1,$\frac{3}{2}$),且左焦點為F1(-1,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設橢圓C的左右頂點分別為A、B,P為橢圓C上一動點,PA,PB分別交直線x=4于點D、E.
(1)求D、E兩點縱坐標的乘積;
(2)若點N($\frac{3}{2}$,0),試判斷點N與以DE為直徑的圓的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設點A1(-$\sqrt{2}$,0)和點A2($\sqrt{2}$,0),直線A1M、A2M相交于點M,且它們的斜率之積是-$\frac{1}{2}$.設M的軌跡為C,過點F(1,0)作直線l交C于P、Q兩點.
(1)求點M的軌跡方程;
(2)求|PQ|的最小值;
(3)是否存在點N,使得以線段PQ為直徑的圓過該定點,若存在,求出定點N的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=$\frac{{e}^{x}}{x-m}$.
(Ⅰ)討論函數(shù)y=f(x)在x∈(m,+∞)上的單調(diào)性;
(Ⅱ)若m∈(0,$\frac{1}{2}$),則當x∈[m,m+1]時,函數(shù)y=f(x)的圖象是否總在函數(shù)g(x)=x2+x的圖象上方?請寫出判斷過程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若點A、B為圓(x-2)2+y2=25上的兩點,點P(3,-1)為弦AB的中點,則弦AB所在的直線方程為x-y-4=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.直線l:x-ky-1=0與圓C:x2+y2=2的位置關系是( 。
A.相切B.相離C.相交D.與k的取值有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設函數(shù)f(x)=sin(2ωx+$\frac{π}{3}$)(其中ω>0),且f(x)的圖象在y軸右側(cè)的第一個最高點的橫坐標是$\frac{π}{6}$.
(1)求y=f(x)的最小正周期及對稱軸;
(2)若x∈$[{-\frac{π}{3},\frac{5π}{6}}]$,函數(shù)$g(x)={[f(x+\frac{π}{2})]^2}$-af(x)+1的最小值為0.求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知圓C:(x+1)2+(y-2)2=2關于直線2ax+by+6=0對稱,則點(a,b)與圓心C的距離的最小值為3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=$\sqrt{|x+2|+|6-x|-m}$的定義域為R.
(Ⅰ)求實數(shù)m的取值范圍;
(Ⅱ)若實數(shù)m的最大值為n,正數(shù)a,b滿足$\frac{8}{3a+b}$+$\frac{2}{a+2b}$=n,求2a+$\frac{3}{2}$b的最小值.

查看答案和解析>>

同步練習冊答案