已知α為銳角,試?yán)脝挝粓A中的三角函數(shù)線證明:1<sinα+cosα
π
2
考點(diǎn):三角函數(shù)線
專題:三角函數(shù)的求值
分析:α為銳角,設(shè)角α的終邊與單位圓交于點(diǎn)P(x,y)時(shí),過P作PM⊥x軸于點(diǎn)M,作PN⊥Y軸于點(diǎn)N(如圖),由sinα+cosα=MP+OM>1.sinα+cosα=MP+OM<(圓弧PA)+(圓弧BP)=(圓弧AB)=
π
2
,即可證明.
解答: 證明:α為銳角,角α的終邊落在第一象限,設(shè)角α的終邊與單位圓交于點(diǎn)P(x,y)時(shí),過P作PM⊥x軸于點(diǎn)M,作PN⊥Y軸于點(diǎn)N(如圖),
則sinα=MP,cosα=OM=NP,利用三角形兩邊之和大于第三邊有:sinα+cosα=MP+OM>1,
又因?yàn)閟inα+cosα=MP+OM<(圓弧PA)+(圓弧BP)=(圓弧AB)=
π
2
,
綜上可得:1<sinα+cosα
π
2

點(diǎn)評(píng):本題主要考查任意角的三角函數(shù)的定義,用單位圓中的三角函數(shù)線表示三角函數(shù)的值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥-2
x>-3
的負(fù)整數(shù)解是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x∈Z|log6(x+4)≤1},B={x∈Z|ax2+4=0}.
(Ⅰ)若a=-1,求證:B⊆A;
(Ⅱ)若∁RA?B,求實(shí)數(shù)a的所有取值構(gòu)成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若空間一點(diǎn)P到兩兩垂直的射線OA,OB,OC的距離分別為a,b,c,則OP的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過正棱臺(tái)兩底面中心的截面一定是(  )
A、直角梯形B、等腰梯形
C、一般梯形或等腰梯形D、矩形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

指出函數(shù)的單調(diào)區(qū)間及單調(diào)性:f(x)=
x+3
x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程
x2
10-k
+
y2
k-2
=1表示橢圓.
(1)求k的取值范圍;
(2)若橢圓經(jīng)過點(diǎn)(1,-
3
),求橢圓的方程、離心率和準(zhǔn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=x2+(a-1)x+1在區(qū)間[1,2]上是增函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2-y2=1.
(1)過C1的左頂點(diǎn)引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
(2)過點(diǎn)Q(-
2
,
2
)
作直線l與雙曲線C1有且只有一個(gè)交點(diǎn),求直線l的方程;
(3)設(shè)橢圓C2:4x2+y2=1.若M、N分別是C1、C2上的動(dòng)點(diǎn),且OM⊥ON,求證:O到直線MN的距離是定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案