【題目】已知函數(shù)的圖象過原點(diǎn),且在處取得極值,直線與曲線在原點(diǎn)處的切線互相垂直.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若對(duì)任意實(shí)數(shù)的,恒有成立,求實(shí)數(shù)的取值范圍.
【答案】(Ⅰ) ;(Ⅱ) .
【解析】試題分析:
(Ⅰ)由題意結(jié)合導(dǎo)函數(shù)研究函數(shù)切線的方法,得到關(guān)于實(shí)數(shù)a,b的方程,求得實(shí)數(shù)a,b的值可得函數(shù)的解析式為
(Ⅱ)結(jié)合(Ⅰ)中求得的函數(shù)的解析式可得函數(shù)f(x)的最大值是2,最小值為-2,據(jù)此可得實(shí)數(shù)的取值范圍是.
試題解析:
(I)
圖象過原點(diǎn),
①
曲線在原點(diǎn)處切線斜率
又直線與切線垂直,
代入①得a=0,
(II)由(I)
易知上為增函數(shù),在[-1,1]上為減函數(shù)
又
上的最大值是2,最小值為-2
要使對(duì)任意恒成立,只需
即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中的“兩鼠穿墻題”是我國數(shù)學(xué)的古典名題:“今有垣厚若干尺,兩鼠對(duì)穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,問何日相逢,各穿幾何?”題意是:“有兩只老鼠從墻的兩邊打洞穿墻,大老鼠第一天進(jìn)一尺,以后每天加倍;小老鼠第一天也進(jìn)一尺,以后每天減半.”如果墻足夠厚,Sn為前n天兩只老鼠打洞長度之和,則Sn=尺.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ACD是邊長為1的等邊三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于點(diǎn)E.
(1)求BD2的值;
(2)求線段AE的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù)(其中a是實(shí)數(shù)).
(1)求的單調(diào)區(qū)間;
(2)若設(shè),且有兩個(gè)極值點(diǎn) ,求取值范圍.(其中e為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某學(xué)校高二年級(jí)學(xué)生的物理成績,從中抽取n名學(xué)生的物理成績(百分制)作為樣本,按成績分成 5組:[50,60),[60,70),[70,80),[80,90),[90,100],頻率分布直方圖如圖所示.成績落在[70,80)中的人數(shù)為20.
男生 | 女生 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
(Ⅰ)求a和n的值;
(Ⅱ)根據(jù)樣本估計(jì)總體的思想,估計(jì)該校高二學(xué)生物理成績的平均數(shù)和中位數(shù)m;
(Ⅲ)成績?cè)?0分以上(含80分)為優(yōu)秀,樣本中成績落在[50,80)中的男、女生人數(shù)比為1:2,成績落在[80,100]中的男、女生人數(shù)比為3:2,完成2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為物理成績優(yōu)秀與性別有關(guān).
參考公式和數(shù)據(jù):K2= .
P(K2≥k) | 0.50 | 0.05 | 0.025 | 0.005 |
k | 0.455 | 3.841 | 5.024 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f ( x)= x2 , g ( x)=a ln x(a>0).
(Ⅰ)求函數(shù) F ( x)=f(x)g(x)的極值
(Ⅱ)若函數(shù) G( x)=f(x)﹣g(x)+(a﹣1)在區(qū)間 ( ,e) 內(nèi)有兩個(gè)零點(diǎn),求的取值范圍;
(Ⅲ)函數(shù) h( x)=g ( x )﹣x+ ,設(shè) x1∈(0,1),x2∈(1,+∞),若 h( x 2)﹣h( x 1)存在最大值,記為 M (a),則當(dāng) a≤e+1 時(shí),M (a) 是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某連鎖經(jīng)營公司所屬5個(gè)零售店某月的銷售額和利潤額資料如下表
商店名稱 | A | B | C | D | E |
銷售額x(千萬元) | 3 | 5 | 6 | 7 | 9 |
利潤額y(百萬元) | 2 | 3 | 3 | 4 | 5 |
(1)畫出散點(diǎn)圖.觀察散點(diǎn)圖,說明兩個(gè)變量有怎樣的相關(guān)性.
(2)用最小二乘法計(jì)算利潤額y對(duì)銷售額x的回歸直線方程.
(3)當(dāng)銷售額為4(千萬元)時(shí),估計(jì)利潤額的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天PM2.5的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如表
組別 | PM2.5濃度 | 頻數(shù)(天) | 頻率 |
第一組 | (0,25] | 3 | 0.15 |
第二組 | (25,50] | 12 | 0.6 |
第三組 | (50,75] | 3 | 0.15 |
第四組 | (75,100] | 2 | 0.1 |
(1)從樣本中PM2.5的24小時(shí)平均濃度超過50微克/立方米的天數(shù)中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過75微克/立方米的概率;
(2)將這20天的測(cè)量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖. ①求圖中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解初三女生身高情況,某中學(xué)對(duì)初三女生身高情況進(jìn)行了一次測(cè)量,所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別 | 頻數(shù) | 頻率 |
145.5~149.5 | 1 | 0.02 |
149.5~153.5 | 4 | 0.08 |
153.5~157.5 | 20 | 0.40 |
157.5~161.5 | 15 | 0.30 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | m | n |
合 計(jì) | M | N |
(1)求出表中m,n,M,N所表示的數(shù)分別是多少?
(2)畫出頻率分布直方圖;
(3)全體女生中身高在哪組范圍內(nèi)的人數(shù)最多?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com