【題目】如圖:在四棱錐中,平面.,.點的交點,點在線段上且.

(1)證明:平面;

(2)求直線與平面所成角的正弦值;

(3)求二面角的正切值.

【答案】(1)證明見解析;(2);(3).

【解析】

1)推導出,在正三角形中,,從而

進而,由此能證明平面;
2)分別以軸,軸,軸建立如圖的空間直角坐標系,求出與平面的法向量,進而利用向量的夾角公式可求出直線與平面所成角的正弦值;

3)求出面與面的法向量,進而利用向量的夾角公式可求出二面角的平面角的余弦值,再轉化為正切值即可.

證明:(1在四棱錐中,平面.,
,.的交點,
,
在正三角形中,,
中,中點,,
,又,
,

在線段上且,

,
平面,平面,
平面
2,
分別以軸,軸,軸建立如圖的空間直角坐標系,

,

,
設平面的法向量,

,取,得,

設直線與平面所成角為,
,

故直線與平面所成角的正弦值為;

3)由(2)可知,為平面的法向量,

,

設平面的法向量為

,即

,解得,

設二面角的平面角為,則

故二面角的正切值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線的參數(shù)方程為為參數(shù), ).以坐標原點為極點,以軸正半軸為極軸的極坐標系中,曲線上一點的極坐標為,曲線的極坐標方程為.

(Ⅰ)求曲線的極坐標方程;

(Ⅱ)設點上,點上(異于極點),若四點依次在同一條直線上,且成等比數(shù)列,求 的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù),且),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為.

(1)將曲線的參數(shù)方程化為普通方程,并將曲線的極坐標方程化為直角坐標方程;

(2)求曲線與曲線交點的極坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線Cρsin2θ2acos θ(a>0),過點P(2,-4)的直線l (t為參數(shù))與曲線C相交于M,N兩點.

(1)求曲線C的直角坐標方程和直線l的普通方程;

(2)|PM|,|MN|,|PN|成等比數(shù)列,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個半圓形湖面景點的平面示意圖.已知為直徑,且km,為圓心,為圓周上靠近的一點,為圓周上靠近的一點,且.現(xiàn)在準備從經(jīng)過建造一條觀光路線,其中是圓弧,是線段.,觀光路線總長為.

1)求關于的函數(shù)解析式,并指出該函數(shù)的定義域;

2)求觀光路線總長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產甲、乙兩種產品均需要兩種原料,已知生產1噸每種產品所需原料及每天原料的可用限額如表所示.如果生產1噸甲、乙產品可獲得利潤分別為3萬元、4萬元,則該企業(yè)每天可獲得最大利潤為( 。

原料限額

(噸)

3

2

10

(噸)

1

2

6

A. 10萬元B. 12萬元C. 13萬元D. 14萬元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,若將判斷框內“”改為關于的不等式“”且要求輸出的結果不變,則正整數(shù)的取值是

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲商店某種商品4月份(30天,41日為第一天)的銷售價格P(元)與時間t(天)的函數(shù)關系如圖所示(1),該商品日銷售量Q(件)與時間t(天)的函數(shù)關系如圖(2)所示.

12

1)寫出圖(1)表示的銷售價格與時間的函數(shù)關系式,寫出圖(2)表示的日銷售量與時間的函數(shù)關系式及日銷售金額M(元)與時間的函數(shù)關系式.

2)乙商店銷售同一種商品,在4月份采用另一種銷售策略,日銷售金額N(元)與時間t(天)之間的函數(shù)關系式為,試比較4月份每天兩商店銷售金額的大小關系。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的最大值和最小值,并求取得最大值和最小值時對應的的值;

(2)設方程在區(qū)間內有兩個相異的實數(shù)根的值;

(3)如果對于區(qū)間上的任意一個都有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案