15.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{1-2i}{2+i}$對(duì)應(yīng)的點(diǎn)的坐標(biāo)為( 。
A.($\frac{4}{5}$,$\frac{3}{5}$)B.($\frac{4}{5}$,-$\frac{3}{5}$)C.(0,1)D.(0,-1)

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)復(fù)數(shù)$\frac{1-2i}{2+i}$,則在復(fù)平面內(nèi),復(fù)數(shù)$\frac{1-2i}{2+i}$對(duì)應(yīng)的點(diǎn)的坐標(biāo)可求.

解答 解:由$\frac{1-2i}{2+i}$=$\frac{(1-2i)(2-i)}{(2+i)(2-i)}=-i$,
則在復(fù)平面內(nèi),復(fù)數(shù)$\frac{1-2i}{2+i}$對(duì)應(yīng)的點(diǎn)的坐標(biāo)為:(0,-1).
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知直線l:y=kx+b,曲線C:x2+y2=1,則“b=1”是“直線l與曲線C有公共點(diǎn)”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知橢圓C1和雙曲線C2焦點(diǎn)相同,且離心率互為倒數(shù),F(xiàn)1,F(xiàn)2它們的公共焦點(diǎn),P是橢圓和雙曲線在第一象限的交點(diǎn),當(dāng)∠F1PF2=60°時(shí),則橢圓C1的離心率為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知$\left\{\begin{array}{l}x-y+1≥0\\ 7x-y-7≤0\\ x≥0,y≥0\end{array}\right.$表示的平面區(qū)域?yàn)镈,若?(x,y)∈D,2x+y≤a為真命題,則實(shí)數(shù)a的取值范圍是( 。
A.[5,+∞)B.[2,+∞)C.[1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)x、y滿足約束條件$\left\{\begin{array}{l}{x-2y+2≥0}\\{3x-2y-6≤0}\\{x≥0,y≥0}\end{array}\right.$若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則a2+b2的最小值為( 。
A.$\frac{25}{4}$B.$\frac{49}{9}$C.$\frac{144}{25}$D.$\frac{225}{49}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知焦點(diǎn)在x軸的橢圓C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{\sqrt{3}}{2}$
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(II)求橢圓C被直線y=x截得的線段長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若函數(shù)f(x)=-2x3+2tx2+1存在唯一的零點(diǎn),則實(shí)數(shù)t的取值范圍為t>-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}滿足a1=1,a2=2,an+2-an=3,則當(dāng)n為偶數(shù)時(shí),數(shù)列{an}的前n項(xiàng)和Sn=( 。
A.$\frac{{3{n^2}}}{8}$-$\frac{1}{4}$B.$\frac{{3{n^2}}}{8}$+$\frac{1}{4}$C.$\frac{{3{n^2}}}{4}$D.$\frac{{3{n^2}}}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示,積木拼盤由A、B、C、D、E五塊積木組成,若每塊積木都要涂一種顏色,且為了體現(xiàn)拼盤的特色,相鄰的區(qū)域需涂不同的顏色(如:A與B為相鄰區(qū)域,A與D為不相鄰區(qū)域),現(xiàn)有五種不同的顏色可供挑選,則可組成的不同的積木拼盤的種數(shù)是( 。
A.780B.840C.900D.960

查看答案和解析>>

同步練習(xí)冊(cè)答案