1.我國古代數(shù)學(xué)名著《九章算術(shù)》中的更相減損法的思路與圖相似.執(zhí)行該程序框圖,若輸入的a,b分別為14,18,則輸出的a=(  )
A.2B.4C.6D.8

分析 由循環(huán)結(jié)構(gòu)的特點(diǎn),先判斷,再執(zhí)行,分別計(jì)算出當(dāng)前的a,b的值,即可得到結(jié)論.

解答 解:由a=14,b=18,a<b,
則b變?yōu)?8-14=4,
由a>b,則a變?yōu)?4-4=10,
由a>b,則a變?yōu)?0-4=6,
由a>b,則a變?yōu)?-4=2,
由a<b,則b變?yōu)?-2=2,
由a=b=2,
則輸出的a=2.
故選:A.

點(diǎn)評(píng) 本題考查算法和程序框圖,主要考查循環(huán)結(jié)構(gòu)的理解和運(yùn)用,以及賦值語句的運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,1+cosA=λsin2A.
(1)若λ=2,求角A的大小;
(2)若sinB+sinC=$\sqrt{3}$sinA,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點(diǎn)F1坐標(biāo)為(-2,0),F(xiàn)2為橢圓C的右焦點(diǎn),點(diǎn)M($\sqrt{3}$,1)在橢圓C上.
(1)求橢圓C的方程;
(2)直線l過F2與橢圓C相交于P,Q兩點(diǎn),記弦PQ中點(diǎn)為N,過F2作直線l的垂線與直線ON交于點(diǎn)T.
①若直線l斜率為$\sqrt{3}$,求PF1+QF1的值;
②求證:點(diǎn)T總在某定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ex,g(x)=mx+n.
(1)設(shè)h(x)=f(x)-g(x).當(dāng)n=0時(shí),若函數(shù)h(x)在(-1,+∞)上沒有零點(diǎn),求m的取值范圍;
(2)設(shè)函數(shù)r(x)=$\frac{m}{f(x)}+\frac{nx}{g(x)}$,且n=4m(m>0),求證:x≥0時(shí),r(x)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)定義在(-1,1)上的函數(shù)f(x)的導(dǎo)函數(shù)f′(x)=5+cosx,且f(0)=0,則不等式f(x-1)+f(1-x2)<0的解集為( 。
A.{x|1$<x<\sqrt{2}$}B.{x|x>1或x<-1}C.{x|-1<x<1}D.{x|0<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在三棱錐A-BCD中,AB=AC=AD=BC=CD=4,$BD=4\sqrt{2}$,E,F(xiàn)分別為AC,CD的中點(diǎn),G為線段BD上一點(diǎn).
(Ⅰ)求直線BE和AF所成角的余弦值;
(Ⅱ)當(dāng)直線BE∥平面AGF時(shí),求四棱錐A-BCFG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.過拋物線τ:y2=8x的焦點(diǎn)F作直線交拋物線于A,B兩點(diǎn),若|AF|=6,則拋物線τ的頂點(diǎn)到直線AB的距離為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a是函數(shù)f(x)=($\frac{1}{2}$)x-log2x的零點(diǎn),若x0<a,則f(x0)的值滿足( 。
A.f(x0)=0B.f(x0)<0C.f(x0)>0D.f(x0)的符號(hào)不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a≥0)
(1)當(dāng)a=0時(shí),求f(x)的極值;
(2)當(dāng)a<0時(shí),討論f(x)的單調(diào)性;
(3)若對(duì)于任意的x1,x2∈[1,3],a∈(-∞,-2)都有|f(x1)-f(x2)|<(m+ln3)a-2ln3,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案