9.設(shè)隨機(jī)變量ξ服從正態(tài)分布N(3,σ2),若P(ξ<2a-3)=P(ξ>a+3),則實(shí)數(shù)a的值為2.

分析 根據(jù)隨機(jī)變量符合正態(tài)分布,又知正態(tài)曲線關(guān)于x=3對稱,得到兩個(gè)概率相等的區(qū)間關(guān)于x=3對稱,得到關(guān)于a的方程,解方程即可.

解答 解:∵隨機(jī)變量ξ服從正態(tài)分布N(3,σ2),
∵P(ξ<2a-3)=P(ξ>a+3),
∴2a-3與a+3關(guān)于x=3對稱,
∴2a-3+a+3=6,
∴3a=6,
∴a=2,
故答案為:2.

點(diǎn)評 本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,本題主要考查曲線關(guān)于x=3對稱,考查關(guān)于直線對稱的點(diǎn)的特點(diǎn),本題是一個(gè)基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}及f(xn)=a1x+a2x2+…+anxn,fn(-1)=(-1)nn,n∈N*
(Ⅰ)求a1,a2,a3的值,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=an-10,求數(shù)列{|bn|}的前n項(xiàng)和Tn;
(Ⅲ)若 ($\frac{1}{2}$n)•an≤$\frac{1}{4}$m2+$\frac{3}{2}$m-1 對一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆安徽淮北十二中高三上月考二數(shù)學(xué)(理)試卷(解析版) 題型:填空題

已知集合,則集合___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列函數(shù)是奇函數(shù)的是( 。
A.f(x)=x|x|B.f(x)=lgxC.f(x)=2x+2-xD.f(x)=x3-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若曲線f(x)=acosx+sinx與曲線g(x)=x2+bx+1在交點(diǎn)(0,m)處有公切線,則a+b=(  )
A.-lB.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如果一個(gè)實(shí)數(shù)數(shù)列{an}滿足條件:$a_{n+1}^2-{a_n}=d$(d為常數(shù),n∈N*),則稱這一數(shù)列“偽等差數(shù)列”,d稱為“偽公差”.給出下列關(guān)于某個(gè)偽等差數(shù)列{an}的結(jié)論:①對于任意的首項(xiàng)a1,若d<0,則這一數(shù)列必為有窮數(shù)列;②當(dāng)d>0,a1>0時(shí),這一數(shù)列必為單調(diào)遞增數(shù)列;③這一數(shù)列可以是一個(gè)周期數(shù)列;④若這一數(shù)列的首項(xiàng)為1,偽公差為3,$-\sqrt{5}$可以是這一數(shù)列中的一項(xiàng);n∈N*⑤若這一數(shù)列的首項(xiàng)為0,第三項(xiàng)為-1,則這一數(shù)列的偽公差可以是$\frac{{\sqrt{5}-3}}{2}$.其中正確的結(jié)論是③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=f′($\frac{π}{2}$)sinx-cosx,則f($\frac{π}{6}$)=$\frac{1-\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$\overrightarrow{a}$=(sin2x,cos2x),$\overrightarrow$=(1,$\sqrt{3}$),且f(x)=$\overrightarrow{a}$•$\overrightarrow$,求f(x)單調(diào)遞增區(qū)間[kπ$-\frac{5π}{12}$,$kπ+\frac{π}{12}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.從1,2,3,4這四個(gè)數(shù)中一次隨機(jī)選取兩個(gè)數(shù),所取兩個(gè)數(shù)之和為5的概率是( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案