10.下列向量與$\overrightarrow{a}$=(1,2)共線的是( 。
A.(2,1)B.(1,2)C.(-1,-2)D.(2,-1)

分析 根據(jù)向量共線的條件判斷即可.

解答 解:$\overrightarrow{a}$=(1,2),
對(duì)于A,2×2-1×1≠0,故不共線,
對(duì)于B,是重合,
對(duì)于C,1×(-2)-2×(-1)=0,故共線,
對(duì)于D,1×(-1)-2×2≠0,故不共線,
故選:C

點(diǎn)評(píng) 本題考查了向量共線的條件,以及坐標(biāo)的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.?dāng)S兩顆骰子,出現(xiàn)的點(diǎn)數(shù)之和是6的概率為(  )
A.$\frac{5}{36}$B.$\frac{1}{12}$C.$\frac{5}{21}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)是R上的偶函數(shù),若對(duì)于x≥0,都有f(x+2)=-f(x),且當(dāng)x∈[0,2]時(shí),f(x)=log8(x+1),求f(-2013)+f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.高三年級(jí)某6個(gè)班聯(lián)合到集市購(gòu)買了6根竹竿,作為班旗的旗桿之用,它們的長(zhǎng)度分別為3.8,4.3,3.6,4.5,4.0,4.1(單位:米).
(1)若從中隨機(jī)抽取兩根竹竿,求長(zhǎng)度之差不超過(guò)0.5米的概率;
(2)若長(zhǎng)度不小于4米的竹竿價(jià)格為每根10元,長(zhǎng)度小于4米的竹竿價(jià)格為每根a元.從這6根竹竿中隨機(jī)抽取兩根,若這兩根竹竿總價(jià)的期望為18元,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.一個(gè)電路如圖所示,C、D、E、F為4個(gè)開關(guān),其閉合的概率都是$\frac{1}{2}$,且是相互獨(dú)立的,則燈亮的概率是( 。
A.$\frac{9}{16}$B.$\frac{7}{16}$C.$\frac{13}{16}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)=x2-ax,g(x)=lnx,h(x)=f(x)+g(x).
(1)當(dāng)a=3時(shí),求h(x)的單調(diào)區(qū)間;
(2)設(shè)h(x)有兩個(gè)極值點(diǎn)x1,x2,且x1∈(0,$\frac{1}{2}$),若h(x1)-h(x2)>m恒成立,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x).當(dāng)-3≤x<-1時(shí),f(x)=-(x+2)2,當(dāng)-1≤x<3時(shí),f(x)=x.則f(1)+f(2)+…+f(2015)=(  )
A.333B.336C.1678D.2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某少數(shù)民族的刺繡有著悠久的歷史,圖中(1)、(2)、(3)、(4)為她們刺銹最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方向構(gòu)成,小正方形數(shù)越多刺銹越漂亮,向按同樣的規(guī)律刺銹(小正方形的擺放規(guī)律相同),設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形

(1)求f(6)的值
(2)求出f(n)的表達(dá)式
(3)求證:1≤$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.曲線y=sinx與直線y=$\frac{2}{π}$x所圍成的平面圖形的面積是2-$\frac{π}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案