(12分)
已知數(shù)列中,,且當(dāng)時(shí),函數(shù)
取得極值;
(Ⅰ)若,證明數(shù)列為等差數(shù)列;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,求

(1)略
(2)
解:(Ⅰ)              ……1分
由題意 由
     ……4分
   ,所以數(shù)列是首項(xiàng)為、
公差為的等差數(shù)列 所以                         ……6分
(Ⅱ) 由(1)可得                                    ……7分

 
兩式相減得    ……10分
                   ……12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列滿足:,
(1)求證:;
(2)若,對(duì)任意的正整數(shù),恒成立.求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列的前項(xiàng)和為,且,,則數(shù)列的通項(xiàng)公式為、
(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本小題滿分12分)  
已知數(shù)列中,,且當(dāng)時(shí),函數(shù)取得極值。
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)數(shù)列滿足:,,證明:是等差數(shù)列,并求數(shù)列的通項(xiàng)公式通項(xiàng)及前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)
在數(shù)列中,已知
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分16分)
已知數(shù)列滿足,當(dāng)時(shí),
⑴求數(shù)列的通項(xiàng)公式;
⑵是否存在,使得時(shí),不等式對(duì)任意實(shí)數(shù)恒成立?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.
⑶在軸上是否存在定點(diǎn),使得三點(diǎn)、(其中、、是互不相等的正整數(shù)且)到定點(diǎn)的距離相等?若存在,求出點(diǎn)及正整數(shù)、;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正項(xiàng)數(shù)列的前n項(xiàng)的乘積,則數(shù)列的前n項(xiàng)和中的最大值是       (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列中,,前10項(xiàng)和.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),證明為等比數(shù)列,并求的前四項(xiàng)之和。
(3)設(shè),求的前五項(xiàng)之和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)等差數(shù)列的前n項(xiàng)和為,若,則中最大的

查看答案和解析>>

同步練習(xí)冊(cè)答案