某一運(yùn)動(dòng)物體,在x(s)時(shí)離出發(fā)點(diǎn)的距離(單位:m)是f(x)=x3+x2+2x.
(1)求在第1s內(nèi)的平均速度;
(2)求在1s末的瞬時(shí)速度;
(3)經(jīng)過(guò)多少時(shí)間該物體的運(yùn)動(dòng)速度達(dá)到14m/s?
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)一有兩個(gè)不同的極值點(diǎn).其極小值為M,試比較2M與一3的大小,并說(shuō)明理由;
(3)設(shè)q>p>2,求證:當(dāng)x∈(p,q)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),,其中是常數(shù),且.
(1)求函數(shù)的極值;
(2)證明:對(duì)任意正數(shù),存在正數(shù),使不等式成立;
(3)設(shè),且,證明:對(duì)任意正數(shù)都有:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在處的切線方程;
(Ⅱ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)在(Ⅱ)的條件下,設(shè)函數(shù),若對(duì)于,,使成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ax+x2-xlna(a>0,a≠1).
(1)當(dāng)a>1時(shí),求證:函數(shù)f(x)在(0,+∞)上單調(diào)遞增;
(2)若函數(shù)y=|f(x)-t|-1有三個(gè)零點(diǎn),求t的值;
(3)若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=lnx,g(x)=ax2+bx(a≠0),設(shè)函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于兩點(diǎn)P、Q,過(guò)線段PQ的中點(diǎn)R作x軸垂線分別交C1、C2于點(diǎn)M、N,問(wèn)是否存在點(diǎn)R,使C1在點(diǎn)M處的切線與C2在點(diǎn)N處的切線互相平行?若存在,求出點(diǎn)R的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)
根,且f′(x)=2x+2.
(1)求y=f(x)的表達(dá)式;
(2)求y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知a,b∈R,函數(shù)f(x)=a+ln(x+1)的圖象與g(x)=x3-x2+bx的圖象在交點(diǎn)(0,0)處有公共切線.
(1)證明:不等式f(x)≤g(x)對(duì)一切x∈(-1,+∞)恒成立;
(2)設(shè)-1<x1<x2,當(dāng)x∈(x1,x2)時(shí),證明:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com