【題目】2016年1月6日北京時(shí)間上午11時(shí)30分,朝鮮中央電視臺宣布“成功進(jìn)行了氫彈試驗(yàn)”,再次震動(dòng)世界,此事件也引起了我國公民熱議,其中丹東市(丹東市和朝鮮隔江)某聊天群有300名網(wǎng)友,烏魯木齊市某微信群有200名網(wǎng)友,為了解不同地區(qū)我國公民對“氫彈試驗(yàn)”事件的關(guān)注程度,現(xiàn)采用分層抽樣的方法,從中抽取了100名網(wǎng)友,先分別統(tǒng)計(jì)了他們在某時(shí)段發(fā)表的信息條數(shù),再將兩地網(wǎng)友發(fā)表的信息條數(shù)分成5組:,分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)求丹東市網(wǎng)友的平均留言條數(shù)(保留整數(shù));

(2)為了進(jìn)一步開展調(diào)查,從樣本中留言條數(shù)不足50條的網(wǎng)友中隨機(jī)抽取2人,求至少抽到一名烏魯木齊市網(wǎng)友的概率;

(3)規(guī)定“留言條數(shù)”不少于70條為“強(qiáng)烈關(guān)注”.

①請你根據(jù)已知條件完成下列的列聯(lián)表:

強(qiáng)烈關(guān)注

非強(qiáng)烈關(guān)注

合計(jì)

丹東市

烏魯木齊市

合計(jì)

②判斷是否有的把握認(rèn)為“強(qiáng)烈關(guān)注”與網(wǎng)友所在的地區(qū)有關(guān)?

附:臨界值表及參考公式:

,其中

【答案】(1)64;(2);(3)列聯(lián)表見解析;沒有.

【解析】

(1)根據(jù)頻率分布直方圖的平均數(shù)的計(jì)算公式得到結(jié)果;(2)根據(jù)頻率分布直方圖得到丹東市滿足條件的人數(shù)6人,烏魯木齊2人,隨機(jī)抽取2人有28種方法,符合題目條件的有13人,根據(jù)古典概型的計(jì)算公式得到結(jié)果;(3)①根據(jù)頻率分布直方圖得到相應(yīng)的列聯(lián)表;②由公式得到卡方值,進(jìn)而得到判斷.

(1)45×0.01×10+55×0.025×10+65×0.04×10+75×0.02×10+85×0.005×10=63.5≈64.

所以丹東市網(wǎng)友的平均留言條數(shù)是64條.

(2)留言條數(shù)不足50條的網(wǎng)友中,丹東市網(wǎng)友有0.01×10×100× =6(人),烏魯木齊市網(wǎng)友有0.005×10×100×=2(人),

從中隨機(jī)抽取2人共有種可能結(jié)果,其中至少有一名烏魯木齊市網(wǎng)友的結(jié)果共有CC+ C=12+1=13種情況,

所以至少抽到一名烏魯木齊市網(wǎng)友的概率為 P

(3)①列聯(lián)表如下:

強(qiáng)烈關(guān)注

非強(qiáng)烈關(guān)注

合計(jì)

丹東市

15

45

60

烏魯木齊市

15

25

40

合計(jì)

30

70

100

K2的觀測值k≈1.79.

因?yàn)?.79<2.706,所以沒有90%的把握認(rèn)為“強(qiáng)烈關(guān)注”與網(wǎng)友所在的地區(qū)有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:

質(zhì)量指標(biāo)值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大型超市在2018年元旦舉辦了一次抽獎(jiǎng)活動(dòng),抽獎(jiǎng)箱里放有2個(gè)紅球,1個(gè)黃球和1個(gè)藍(lán)球(這些小球除顏色外大小形狀完全相同),從中隨機(jī)一次性取2個(gè)小球,每位顧客每次抽完獎(jiǎng)后將球放回抽獎(jiǎng)箱.活動(dòng)另附說明如下:

①凡購物滿100(含100)元者,憑購物打印憑條可獲得一次抽獎(jiǎng)機(jī)會;

②凡購物滿188(含188)元者,憑購物打印憑條可獲得兩次抽獎(jiǎng)機(jī)會;

③若取得的2個(gè)小球都是紅球,則該顧客中得一等獎(jiǎng),獎(jiǎng)金是一個(gè)10元的紅包;

④若取得的2個(gè)小球都不是紅球,則該顧客中得二等獎(jiǎng),獎(jiǎng)金是一個(gè)5元的紅包;

⑤若取得的2個(gè)小球只有1個(gè)紅球,則該顧客中得三等獎(jiǎng),獎(jiǎng)金是一個(gè)2元的紅包.

抽獎(jiǎng)活動(dòng)的組織者記錄了該超市前20位顧客的購物消費(fèi)數(shù)據(jù)(單位:元),繪制得到如圖所示的莖葉圖.

(1)求這20位顧客中獲得抽獎(jiǎng)機(jī)會的人數(shù)與抽獎(jiǎng)總次數(shù)(假定每位獲得抽獎(jiǎng)機(jī)會的顧客都會去抽獎(jiǎng));

(2)求這20位顧客中獎(jiǎng)得抽獎(jiǎng)機(jī)會的顧客的購物消費(fèi)數(shù)據(jù)的中位數(shù)與平均數(shù)(結(jié)果精確到整數(shù)部分);

(3)分別求在一次抽獎(jiǎng)中獲得紅包獎(jiǎng)金10元,5元,2元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,拋物線 與拋物線 異于原點(diǎn)的交點(diǎn)為,且拋物線在點(diǎn)處的切線與軸交于點(diǎn),拋物線在點(diǎn)處的切線與軸交于點(diǎn),與軸交于點(diǎn).

(1)若直線與拋物線交于點(diǎn), ,且,求拋物線的方程;

(2)證明: 的面積與四邊形的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在,使成立,則稱的不動(dòng)點(diǎn).已知函數(shù) .

1)當(dāng),時(shí),求函數(shù)的不動(dòng)點(diǎn);

2)若對任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍;

3)在(2)的條件下,若的兩個(gè)不動(dòng)點(diǎn)為,,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).

(1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;

(2)當(dāng)p=1時(shí),若拋物線C上存在關(guān)于直線l對稱的相異兩點(diǎn)P和Q.求線段PQ的中點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AC=3,BC=4,AB=5,以AB所在直線為軸,三角形面旋轉(zhuǎn)一周形成一旋轉(zhuǎn)體,求此旋轉(zhuǎn)體的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

某初級中學(xué)共有學(xué)生2000名,各年級男、女生人數(shù)如下表:


初一年級

初二年級

初三年級

女生

373

x

y

男生

377

370

z

已知在全校學(xué)生中隨機(jī)抽取1名,抽到初二年級女生的概率是0.19.

x的值;

現(xiàn)用分層抽樣的方法在全校抽取48名學(xué)生,問應(yīng)在初三年級抽取多少名?

已知y245,z245,求初三年級中女生比男生多的概率.

查看答案和解析>>

同步練習(xí)冊答案