平面外兩條直線在該平面上的射影互相平行,則這兩條直線(  )
A、異面B、平行
C、相交D、平行或異面
考點(diǎn):空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用特例判斷即可.
解答: 解:如圖正方體中,EF,GH在底面的射影是平行線AB,CD,
BE與GH在底面的射影也是平行線AB,CD;
但是BE與GH是異面直線;EF,GH是平行線.
故選:D.
點(diǎn)評:本題考查空間直線與直線的位置關(guān)系,射影的應(yīng)用,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(x0,y0) 在橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)上,如果經(jīng)過點(diǎn)P的直線與橢圓只有一個(gè)公共點(diǎn)時(shí),稱直線為橢圓的切線,此時(shí)點(diǎn)P稱為切點(diǎn),這條切線方程可以表示為:
x0x
a2
+
y0y
b2
=1

根據(jù)以上性質(zhì),解決以下問題:
已知橢圓L:
x2
16
+
y2
9
=1
,若Q(u,v)是橢圓L外一點(diǎn)(其中u,v為定值),經(jīng)過Q點(diǎn)作橢圓L的兩條切線,切點(diǎn)分別為A、B,則直線AB的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,∠A、∠B、∠C所對的邊分別為a、b、c,∠A為銳角且滿足cos(2A-
π
3
)-sin(2A-
π
6
)=-
7
25

(1)求cosA的值;
(2)若a=
17
,b=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos2
x
2
-sin2
x
2
-2
3
sin
x
2
cos
x
2
-m=0,若方程在[0,π]上有兩個(gè)相異實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)的焦點(diǎn)為F,已知點(diǎn)A,B為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿足∠AFB=120°.過弦AB的中點(diǎn)M作拋物線準(zhǔn)線的垂線MN,垂足為N,則
|AB|
|MN|
的最小值為( 。
A、
3
3
B、
2
3
3
C、1
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在上學(xué)途中要經(jīng)過4個(gè)路口,假設(shè)在各路口遇到紅燈的概率都是
1
4
,且是否遇到紅燈是相互獨(dú)立的,遇到紅燈時(shí)停留的時(shí)間都是2min.
(1)求這名學(xué)生到第三個(gè)路口時(shí)首次遇到紅燈的概率;
(2)求這名學(xué)生在上學(xué)途中因遇到紅燈停留的總時(shí)間X的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=xn+1(n∈N+)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)為xn,則log2015x1+log2015x2+…+log2015x2014的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x+sinxcosx.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[0,
π
2
]時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E、F分別是AB和AA1的中點(diǎn),則下列命題:
①E、C、D1、F四點(diǎn)共面;  ②CE、D1F、DA三線共點(diǎn);③EF和BD1所成的角為90°;④A1B∥平面CD1E中,正確的是
 

查看答案和解析>>

同步練習(xí)冊答案