(12分)直線l的方程為(a+1)xy+2-a=0  (aR)。

(1)若l在兩坐標(biāo)軸上的截距相等,求a的值;

(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍。

 

【答案】

(1)a值為0或2;(2)a≤-1。

【解析】本題主要考查直線方程的一般式,直線在坐標(biāo)軸上的截距的定義,直線在坐標(biāo)系中的位置與它的斜率、截距的關(guān)系,屬于基礎(chǔ)題

(Ⅰ)根據(jù)直線方程求出它在兩坐標(biāo)軸上的截距,根據(jù)它在兩坐標(biāo)軸上的截距相等,求出a的值,即得直線l方程.

(Ⅱ)把直線方程化為斜截式為 y=-(a+1)x-a-2,若l不經(jīng)過第二象限,則a=-1 或  -(a+1)>0,-a-2≤0  ,由此求得實(shí)數(shù)a的取值范圍

解:(1)當(dāng)直線l過原點(diǎn)時(shí),該直線在x軸和y軸上的截距為零。

a=2,方程為3xy=0

 若a≠2,則a-2,a+1=1,a=0

此時(shí)方程為xy+2=0

∴所求a值為0或2

(2)∵直線過原點(diǎn)時(shí),y=-3x經(jīng)過第二象限,不合題意

<0

 

<0

 

>0

 
直線不過原點(diǎn)時(shí),

a≤-1

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R).
(1)若l在兩坐標(biāo)軸上的截距相等,求l的方程;
(2)若l不經(jīng)過第二象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)為A(0,5)、B(1,-2)、C(-6,4),求BC邊上的高所在直線的方程;
(Ⅱ)設(shè)直線l的方程為 (a-1)x+y-2-a=0(a∈R).若直線l在兩坐標(biāo)軸上的截距相等,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)A(-2,0),B(2,0),曲線E上任一點(diǎn)P滿足|PA|-|PB|=2.
(1)求曲線E的方程;
(2)延長PB與曲線E交于另一點(diǎn)Q,求|PQ|的最小值;
(3)若直線l的方程為x=a(a≤
12
),延長PB與曲線E交于另一點(diǎn)Q,如果存在某一位置,使得PQ的中點(diǎn)R在l上的射影C滿足PC⊥QC,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓A:(x+2)2+y2=
25
4
,圓B:(x-2)2+y2=
1
4
,動(dòng)圓P與圓A、圓B均外切,直線l的方程為x=a(a≤
1
2
).
(Ⅰ) 求動(dòng)圓P的圓心的軌跡C的方程;
(Ⅱ)過點(diǎn)B的直線與曲線C交于M、N兩點(diǎn),(1)求|MN|的最小值;(2)若MN的中點(diǎn)R在l上的射影Q滿足MQ⊥NQ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l的方程為(a+1)x+y+2-a=0(a∈R),若直線l不經(jīng)過第二象限,則實(shí)數(shù)a的取值范圍
(-∞,-1]
(-∞,-1]

查看答案和解析>>

同步練習(xí)冊答案