(2012•豐臺(tái)區(qū)二模)已知雙曲線
x2
m2+28
-
y2
m2
=1
上一點(diǎn)M到兩個(gè)焦點(diǎn)的距離分別為20和4,則該雙曲線的離心率為
5
4
5
4
分析:根據(jù)雙曲線的定義,得2a=|MF1|-|MF2|=16,a=8,從而算出m2的值,結(jié)合雙曲線基本量的平方關(guān)系算出c的值,最后利用離心率的公式,可算出該雙曲線的離心率.
解答:解:設(shè)雙曲線焦點(diǎn)分別為F1、F2,|MF1|=20,|MF2|=4
∴2a=|MF1|-|MF2|=16,得a=8
因此a2=m2+28=64,得m2=36.
所以b2=m2=36,可得c2=a2+b2=100得c=10
∴該雙曲線的離心率為e=
c
a
=
10
8
=
5
4

故答案為:
5
4
點(diǎn)評(píng):本題給出含有字母參數(shù)的雙曲線方程,給出其上一點(diǎn)到兩個(gè)焦點(diǎn)的距離,求雙曲線的離心率.著重考查了雙曲線的標(biāo)準(zhǔn)方程和簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)二模)執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果為63,則判斷框中應(yīng)填( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)二模)如圖所示,四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,Q是棱PA上的動(dòng)點(diǎn).
(Ⅰ)若Q是PA的中點(diǎn),求證:PC∥平面BDQ;
(Ⅱ)若PB=PD,求證:BD⊥CQ;
(Ⅲ)在(Ⅱ)的條件下,若PA=PC,PB=3,∠ABC=60°,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)二模)從5名學(xué)生中任選4名分別參加數(shù)學(xué)、物理、化學(xué)、生物四科競(jìng)賽,且每科競(jìng)賽只有1人參加,若甲不參加生物競(jìng)賽,則不同的選擇方案共有
96
96
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)二模)在平面直角坐標(biāo)系中,若點(diǎn)A,B同時(shí)滿足:①點(diǎn)A,B都在函數(shù)y=f(x)圖象上;②點(diǎn)A,B關(guān)于原點(diǎn)對(duì)稱,則稱點(diǎn)對(duì)(A,B)是函數(shù)y=f(x)的一個(gè)“姐妹點(diǎn)對(duì)”(規(guī)定點(diǎn)對(duì)(A,B)與點(diǎn)對(duì)(B,A)是同一個(gè)“姐妹點(diǎn)對(duì)”).那么函數(shù)f(x)=
x-4,x≥0
x2-2x,x<0
的“姐妹點(diǎn)對(duì)”的個(gè)數(shù)為
1
1
;當(dāng)函數(shù)g(x)=ax-x-a有“姐妹點(diǎn)對(duì)”時(shí),a的取值范圍是
a>1
a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)二模)某地區(qū)恩格爾系數(shù)y(%)與年份x的統(tǒng)計(jì)數(shù)據(jù)如下表:
年份x 2004 2005 2006 2007
恩格爾系數(shù)y(%) 47 45.5 43.5 41
從散點(diǎn)圖可以看出y與x線性相關(guān),且可得回歸方程為
?
y
=
?
b
x+4055.25
,據(jù)此模型可預(yù)測(cè)2012年該地區(qū)的恩格爾系數(shù)(%)為
31.25
31.25

查看答案和解析>>

同步練習(xí)冊(cè)答案