10.如圖,∠BAC的平分線與BC和△ABC的外接圓分別相交于D和E,延長AC交過D,E,C三點的圓于點F.
(1)求證:EC=EF;
(2)若ED=2,EF=3,求AC•AF的值.

分析 (1)運用圓內(nèi)接四邊形的性質,內(nèi)角平分線的定義,證明∠ECF=∠EFC,即可證明EC=EF;
(2)由三角形相似的判定定理,證明△CEA∽△DEC,求出EA,利用割線定理,即可求AC•AF的值.

解答 (1)證明:因為∠ECF=∠CAE+∠CEA=∠CAE+∠CBA
∠EFC=∠CDA=∠BAE+∠CBA,
AE平分∠BAC,可得∠CAE=∠BAE,
可得∠ECF=∠EFC,即△ECF為等腰三角形,
所以EC=EF;
(2)解:因為∠ECD=∠BAE=∠EAC,∠CEA=∠DEC,
所以△CEA∽△DEC,即$\frac{CE}{EA}$=$\frac{DE}{CE}$,即EA=$\frac{E{C}^{2}}{DE}$,
又ED=2,EF=3,
由(1)知,EC=EF=3,所以EA=$\frac{9}{2}$,
所以AC•AF=AD•AE=(AE-DE)•AE=($\frac{9}{2}$-2)×$\frac{9}{2}$=$\frac{45}{4}$.

點評 本題考查三角形相似的判定與性質,圓的內(nèi)接四邊形的性質,割線定理的運用,考查推理和計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.設函數(shù)f(x)=lnx+$\frac{a}{x}$.
(1)若曲線y=f(x)(0<x<3)上任意一點P(x0,y0)處切線的斜率k≤$\frac{1}{2}$恒成立,求實數(shù)a的取值范圍;
(2)若方程f(x)-$\frac{a}{x}$+x=mx在區(qū)間[1,e2]內(nèi)有唯一實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知直線l:$\left\{\begin{array}{l}x=1+\frac{1}{2}t\\ y=\sqrt{3}+\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸且兩坐標系中具有相同的長度單位,建立極坐標系,曲線C的極坐標方程為ρ2-2$\sqrt{3}$ρsinθ=a(a>-3)
(Ⅰ)將曲線C的極坐標方程化為直角坐標方程;
(Ⅱ)若曲線C與直線l有唯一公共點,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系xOy中,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,已知曲線C1的極坐標方程為:ρ2cos2θ+3ρ2sin2θ=3,曲線C2的參數(shù)方程是$\left\{\begin{array}{l}{x=-\sqrt{3}t}\\{y=1+t}\end{array}\right.$(t為參數(shù)).
(1)求曲線C1和C2的直角坐標方程;
(1)設曲線C1和C2交于兩點A,B,求以線段AB為直徑的圓的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,△ABC的邊AB、BC與⊙O交于A、D、E、C四點,且AC=BE,∠ADC=∠BDE.
(Ⅰ)求證:CD平分∠ACB;
(Ⅱ)若2BE=3DE=3,求BC的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,直線PA切⊙O于點A,直線PB交⊙O于點B,C,∠APC的角平分線分別與AB,AC相交于點D,E.
(1)證明:AD=AE;
(2)證明:AD2=DB•EC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)定義域為(-$\frac{1}{2}$,$\frac{1}{2}$),則f(cosx)的定義域為(2kπ+$\frac{π}{3}$,2kπ+$\frac{2π}{3}$)∪(2kπ+$\frac{4π}{3}$,2kπ+$\frac{5π}{3}$),k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖所示的幾何體中,四邊形CDEF為正方形,四邊形ABCD為等腰梯形,AB∥CD,AC=$\sqrt{3}$,AB=2BC=2,AC⊥FB.
(1)求證:AC⊥DE;
(2)求點C到平面BDF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知等比數(shù)列[an}滿足2a1+a3=3a2,且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{1}{{a}_{n}}$+log2$\frac{1}{{a}_{n}}$,Sn=b1+b2+…+bn,求使Sn+35<0成立的n的最小值.

查看答案和解析>>

同步練習冊答案