15.已知α是第三象限角,tan(2π-α)=-$\frac{5}{12}$,則sinα等于(  )
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.-$\frac{5}{13}$D.$\frac{5}{13}$

分析 利用條件以及同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個(gè)象限中的符號(hào),求得sinα的值.

解答 解:∵α是第三象限角,tan(2π-α)=-tanα=$\frac{sinα}{cosα}$=-$\frac{5}{12}$,sin2α+cos2α=1,
求得sinα=-$\frac{5}{13}$,
故選:C.

點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知實(shí)數(shù)a、b,原命題:“如果a<2,那么a2<4”,寫出它的逆命題、否命題、逆否命題;并分別判斷四個(gè)命題的真假性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)有窮數(shù)列{am}(m=1,2,3,4,…,n;n=2,3,4,…,)滿足以下兩個(gè)條件:
①$\sum_{i=1}^n{a_i}=0$;②$\sum_{i=1}^n{|{a_i}|}=1$;稱{am}為n階“單位數(shù)列”.
(Ⅰ)分別寫出一個(gè)單調(diào)遞增的3階和4階“單位數(shù)列”;
(Ⅱ)若某2k+1(k∈N*)階“單位數(shù)列”是等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
(Ⅲ)記n階“單位數(shù)列”的前k項(xiàng)和為Sk(k=1,2,3,…,n),
求證:(1)$|{S_k}|≤\frac{1}{2}$;     (2)$|{\sum_{i=1}^n{\frac{a_i}{i}}}|≤\frac{1}{2}-\frac{1}{2n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在四棱錐P-ABCD中,PC⊥平面ABCD,DC∥AB,DC=2,AB=4,BC=2$\sqrt{3}$,∠CBA=30°.
(1)求證:AC⊥PB;
(2)若PC=2,點(diǎn)M是棱PB上的點(diǎn),且CM∥平面PAD,求BM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形.E、F分別是AB、PD的中點(diǎn).若PA=AD=3,CD=$\sqrt{6}$,
(1)求證:AF∥平面PEC;
(2)求證:AF⊥平面PCD;
(3)求平面PBC與平面ABCD所成的二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)f(x)=$\frac{1}{3}$x3+x2-3x+1在(a,2a+7)上有最小值,則實(shí)數(shù)a的取值范圍為(-3,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知圓 x2+y2+2x-4y+1=0,關(guān)于直線2ax-by+2=0(a,b∈R+)對(duì)稱,則$\frac{3}{a}$+$\frac{2}$的最小值為$5+2\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知數(shù)列{an}滿足a1=1,an+1-an=2n,則a5=( 。
A.21B.20C.11D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知f(x)=sinωx+cosωx(ω>0),x∈R,
①若ω=1,函數(shù)f(x)的對(duì)稱中心是$(kπ-\frac{π}{4},0)(k∈z)$;
②若函數(shù)f(x)在區(qū)間(-ω,ω)內(nèi)單調(diào)遞增,且其圖象關(guān)于直線x=ω對(duì)稱,則ω的值為$\frac{\sqrt{π}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案