1.已知實(shí)數(shù)a、b,原命題:“如果a<2,那么a2<4”,寫(xiě)出它的逆命題、否命題、逆否命題;并分別判斷四個(gè)命題的真假性.

分析 根據(jù)四種命題的形式與之間的關(guān)系,分別寫(xiě)出原命題的逆命題、否命題和逆否命題;并判斷這四個(gè)命題的真假性即可.

解答 解:原命題:“如果a<2,那么a2<4”,是假命題;
逆命題:“如果a2<4,那么a<2”,是真命題;
否命題:“如果a≥2,那么a2≥4”,是真命題;
逆否命題:“如果a2≥4,那么a≥2”,是假命題.

點(diǎn)評(píng) 本題考查了四種命題之間的關(guān)系以及命題真假性的判斷問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知角A為三角形的一個(gè)內(nèi)角,且cosA=$\frac{3}{5}$,sinA=$\frac{4}{5}$.cos2A=-$\frac{7}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.等腰△ABC中,底邊BC=2$\sqrt{3}$,|$\overrightarrow{BA}$-t$\overrightarrow{BC}$|的最小值為$\frac{1}{2}$|$\overrightarrow{AC}$|,則△ABC的面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知$\overrightarrow{a}$=(m-2)$\overrightarrow{i}$+2$\overrightarrow{j}$,$\overrightarrow$=$\overrightarrow{i}$+(m+1)$\overrightarrow{j}$,其中$\overrightarrow{i}$、$\overrightarrow{j}$分別為x、y軸正方向單位向量.
(1)若m=2,求$\overrightarrow{a}$與$\overrightarrow$的夾角;
(2)若($\overrightarrow{a}$+$\overrightarrow$)⊥($\overrightarrow{a}$-$\overrightarrow$),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.集合A={x|x≤1},B={x|x≥a},A∪B=R,則a的取值范圍是a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)全集U=R,集合A={x|x<2},B={y|y=x2+1},則A∪∁UB=(-∞,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.我們定義漸近線(xiàn):已知曲線(xiàn)C,如果存在一條直線(xiàn),當(dāng)曲線(xiàn)C上任意一點(diǎn)M沿曲線(xiàn)運(yùn)動(dòng)時(shí),M可無(wú)限趨近于該直線(xiàn)但永遠(yuǎn)達(dá)不到,那么這條直線(xiàn)稱(chēng)為這條曲線(xiàn)的漸近線(xiàn):下列函數(shù):①y=x${\;}^{\frac{1}{3}}$;②y=2x-1;③y=lg(x-1);④y=$\frac{x+1}{2x-1}$;其中有漸近線(xiàn)的函數(shù)的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=sinx+$\sqrt{3}$cosx,x∈R.
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)設(shè)函數(shù)g(x)=[f(x)]2-2,x∈[0,$\frac{π}{4}$],求g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知α是第三象限角,tan(2π-α)=-$\frac{5}{12}$,則sinα等于( 。
A.$\frac{1}{5}$B.-$\frac{1}{5}$C.-$\frac{5}{13}$D.$\frac{5}{13}$

查看答案和解析>>

同步練習(xí)冊(cè)答案