過(guò)點(diǎn)且與直線(xiàn)垂直的直線(xiàn)方程是

A.                             B.

C.                          D.

 

【答案】

A

【解析】解:因?yàn)檫^(guò)點(diǎn)直線(xiàn)方程斜率為2,因此由點(diǎn)斜式可知方程為,選A

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列四個(gè)命題:
①有兩個(gè)側(cè)面是矩形的四棱柱是直四棱柱;
②若f(x)是單調(diào)函數(shù),則f(x)與它的反函數(shù)f -1(x)具有相同的單調(diào)性;
③若兩平面垂直相交于直線(xiàn)m,則過(guò)一個(gè)平面內(nèi)一點(diǎn)垂直于m的直線(xiàn)就垂直于另一平面;
④在120°的二面角內(nèi)放一個(gè)半徑為6的球,使它與兩個(gè)半平面各有且僅有一個(gè)公共點(diǎn),則球心到這個(gè)二面角的棱的距離是2
3
.其中,不正確命題的序號(hào)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆重慶市“名校聯(lián)盟”高二第一次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知兩條直線(xiàn)的交點(diǎn)為P,直

線(xiàn)的方程為:.

(1)求過(guò)點(diǎn)P且與平行的直線(xiàn)方程;

(2)求過(guò)點(diǎn)P且與垂直的直線(xiàn)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省高三5月模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的離心率為,直線(xiàn):與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線(xiàn)過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線(xiàn)

于點(diǎn),線(xiàn)段垂直平分線(xiàn)交于點(diǎn),求點(diǎn)的軌跡的方程;

(3)當(dāng)P不在軸上時(shí),在曲線(xiàn)上是否存在兩個(gè)不同點(diǎn)C、D關(guān)于對(duì)稱(chēng),若存在,

求出的斜率范圍,若不存在,說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省高三下學(xué)期第二次考試數(shù)學(xué)(文) 題型:解答題

(本題滿(mǎn)分12分)已知橢圓的離心率為,

直線(xiàn)與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切。

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線(xiàn)過(guò)點(diǎn)F1,且垂直于橢圓的長(zhǎng)軸,動(dòng)直

線(xiàn)垂直于點(diǎn)P,線(xiàn)段PF2的垂直平分線(xiàn)交于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點(diǎn)F2,求四邊形ABCD的面積

的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省高三下學(xué)期第二次考試數(shù)學(xué)(文) 題型:解答題

(本題滿(mǎn)分12分)已知橢圓的離心率為,

直線(xiàn)與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切。

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)橢圓的左焦點(diǎn)為F1,右焦點(diǎn)為F2,直線(xiàn)過(guò)點(diǎn)F1,且垂直于橢圓的長(zhǎng)軸,動(dòng)直

線(xiàn)垂直于點(diǎn)P,線(xiàn)段PF2的垂直平分線(xiàn)交于點(diǎn)M,求點(diǎn)M的軌跡C2的方程;

(Ⅲ)若AC、BD為橢圓C1的兩條相互垂直的弦,垂足為右焦點(diǎn)F2,求四邊形ABCD的面積

的最小值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案