【題目】已知函數的定義域為集合A,B={x|x<a}.
(1)求集合A;
(2)若AB,求a的取值范圍;
(3)若全集U={x|x≤4},a=-1,求U A及A∩(U B).
【答案】(1)A={x|-2<x≤3};(2)(3,+∞);(3)U A=(-∞,-2]∪(3,4],A∩(U B)=[-1,3].
【解析】試題分析:(1)由和即可得定義域;
(2)利用數軸及AB可得a>3;
(3)由U={x|x≤4},a=-1,利用補集定義可得U A和U B進而利用交集定義得A∩(U B).
試題解析:
(1)使有意義的實數x的集合是{x|x≤3},使有意義的實數x的集合是{x|x>-2}.
所以,這個函數的定義域是{x|x≤3}∩{x|x>-2}={x|-2<x≤3}.
即A={x|-2<x≤3}.
(2)因為A={x|-2<x≤3},B={x|x<a}且AB,所以a>3.
即a的取值范圍為(3,+∞).
(3)因為U={x|x≤4},A={x|-2<x≤3},
所以U A=(-∞,-2]∪(3,4].
因為a=-1,所以B={x|x<-1},
所以U B=[-1,4],
所以A∩(U B)=[-1,3].
科目:高中數學 來源: 題型:
【題目】【2014課標全國Ⅰ,文12】已知函數f(x)=ax3-3x2+1,若f(x)存在唯一的零點x0,且x0>0,則a的取值范圍是( ).
A.(2,+∞) B.(1,+∞)
C.(-∞,-2) D.(-∞,-1)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin ωx·cos ωx+ cos2ωx-
(ω>0),直線x=x1,x=x2是y=f(x)圖象的任意兩條對稱軸,且|x1-x2|的最小值為 .
(Ⅰ)求f(x)的表達式;
(Ⅱ)將函數f(x)的圖象向右平移個單位長度后,再將得到的圖象上各點的橫坐標伸長為原來的2倍,縱坐標不變,得到函數y=g(x)的圖象,求函數g(x)的單調減區(qū)間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯系,發(fā)生交通事故的次數越多,費率也就是越高,具體浮動情況如下表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責任道路交通事故 | 下浮10% | |
上兩個年度未發(fā)生有責任道路交通事故 | 下浮20% | |
上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機構為了 某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定,,記為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數學期望;(數學期望值保留到個位數字)
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“中國式過馬路”是網友對部分中國人集體闖紅燈現象的一種調侃,及“湊夠一撮人就可以走了,和紅綠燈無關”,某校研究性學習小組對全校學生按“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”等三種形式進行調查獲得下表數據:
跟從別人闖紅燈 | 從不闖紅燈 | 帶頭闖紅燈 | |
男生 | 980 | 410 | 60 |
女生 | 340 | 150 | 60 |
用分層抽樣的方法,從所有被調查的人中抽取一個容量為的樣本,其中在“跟從別人闖紅燈”的人中抽取了66人,
(Ⅰ) 求的值;
(Ⅱ)在所抽取的“帶頭闖紅燈”的人中,任選取2人參加星期天社區(qū)組織的“文明交通”宣傳活動,求這2人中至少有1人是女生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應市政府“綠色出行”的號召,王老師每個工作日上下班由自駕車改為選擇乘坐地鐵或騎共享單車這兩種方式中的一種出行.根據王老師從2017年3月到2017年5月的出行情況統(tǒng)計可知,王老師每次出行乘坐地鐵的概率是0.4,騎共享單車的概率是0.6.乘坐地鐵單程所需的費用是3元,騎共享單車單程所需的費用是1元.記王老師在一個工作日內上下班所花費的總交通費用為X元,假設王老師上下班選擇出行方式是相互獨立的.
(I)求X的分布列和數學期望;
(II)已知王老師在2017年6月的所有工作日(按22個工作日計)中共花費交通費用110元,請判斷王老師6月份的出行規(guī)律是否發(fā)生明顯變化,并依據以下原則說明理由.
原則:設表示王老師某月每個工作日出行的平均費用,若,則有95%的把握認為王老師該月的出行規(guī)律與前幾個月的出行規(guī)律相比有明顯變化.(注: )
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分12分)某公司的廣告費支出x與銷售額y(單位:萬元)之間有下列對應數據
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖,并判斷廣告費與銷售額是否具有相關關系;
(2)根據表中提供的數據,用最小二乘法求出y與x的回歸方程;
(3)預測銷售額為115萬元時,大約需要多少萬元廣告費。
參考公式:回歸方程為其中,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為,且過點.
(Ⅰ)求橢圓的方程.
(Ⅱ)若, 是橢圓上兩個不同的動點,且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com