精英家教網 > 高中數學 > 題目詳情

【題目】“中國式過馬路”是網友對部分中國人集體闖紅燈現象的一種調侃,及“湊夠一撮人就可以走了,和紅綠燈無關”,某校研究性學習小組對全校學生按“跟從別人闖紅燈”“從不闖紅燈”“帶頭闖紅燈”等三種形式進行調查獲得下表數據:

跟從別人闖紅燈

從不闖紅燈

帶頭闖紅燈

男生

980

410

60

女生

340

150

60

用分層抽樣的方法,從所有被調查的人中抽取一個容量為的樣本,其中在“跟從別人闖紅燈”的人中抽取了66人,

(Ⅰ) 求的值;

(Ⅱ)在所抽取的“帶頭闖紅燈”的人中,任選取2人參加星期天社區(qū)組織的“文明交通”宣傳活動,求這2人中至少有1人是女生的概率.

【答案】(Ⅰ); (Ⅱ).

【解析】試題分析:(Ⅰ)根據分層抽樣的抽取比例可求得值;
(Ⅱ)利用系統(tǒng)抽樣的定義求出分段間隔,可得所抽取的個人的編號,判斷抽取的 人中有女,求得從人中任選取人的情況種數,和至少有一名女生的情況種數,利用古典概型的概率公式計算.

試題解析:(Ⅰ)由題意得: ,

解得

(Ⅱ)因為所有參與調查的人數為 ,所以從在“帶頭闖紅燈”的人中用分層抽樣抽取的人數為

其中男生為人,女生為人,設從“帶頭闖紅燈”中抽取的6人中男生用表示,女生分別用表示,則從這6人中任選取2人所有的基本事件為: ,,,, 共有15個.這兩人均是男生的基本事件為,則至少有一個是女生的基本事件共有12個.故從這6人中任選取2人,至少有一個是女生的概率.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某廠商調查甲、乙兩種不同型號電視機在10個賣場的銷售量(單位:臺),并根據這10個賣場的銷售情況,得到如圖所示的莖葉圖.

為了鼓勵賣場,在同型號電視機的銷售中,該廠商將銷售量高于數據平均數的賣場命名為該型號電視機的“星級賣場”.

(1)當時,記甲型號電視機的“星級賣場”數量為,乙型號電視機的“星級賣場”數量為,比較的大小關系;

(2)在這10個賣場中,隨機選取2個賣場,記為其中甲型號電視機的“星級賣場”的個數,求的分布列和數學期望;

(3)若,記乙型號電視機銷售量的方差為,根據莖葉圖推斷為何值時,達到最小值.(只需寫出結論)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,它在點處的切線為直線

(Ⅰ)求直線的直角坐標方程;

(Ⅱ)已知點為橢圓上一點,求點到直線的距離的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】a、b是方程2lg2 xlg x410的兩個實根,求lg(ab 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的定義域為集合A,B{x|x<a}

(1)求集合A

(2)AB,a的取值范圍;

(3)若全集U{x|x4},a=-1,U AA(U B)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】線段AB的兩端在直二面角αlβ的兩個面內,并與這兩個面都成30°角,則異面直線ABl所成的角是(  )

A. 30° B. 45°

C. 60° D. 75°

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場經營一批進價為/臺的小商品,經調查得知如下數據.若銷售價上下調整,銷售量和利潤大體如下:

銷售價(/臺)

日銷售量(

日銷售額

日銷售利潤(

1)在下面給出的直角坐標系中,根據表中的數據描出實數對的對應點,并寫出的一個函數關系式;

2)請把表中的空格里的數據填上;

3)根據表中的數據求的函數關系式,并指出當銷售單價為多少元時,才能獲得最大日銷售利潤?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】A是實數集,滿足若aA,則A,a≠1,且1A.

(1)若2∈A,則集合A中至少還有幾個元素?求出這幾個元素.

(2)集合A中能否只含有一個元素?請說明理由.

(3)若aA,證明:1-A.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4;坐標系與參數方程

在直角坐標系中,直線的參數方程為為參數).在以坐標原點為極點, 軸正半軸為極軸的極坐標中,曲線

(Ⅰ)求直線的普通方程和曲線的直角坐標方程.

(Ⅱ)求曲線上的點到直線的距離的最大值.

查看答案和解析>>

同步練習冊答案