如圖,是圓柱體的一條母線,過底面圓的圓心,是圓上不與點重合的任意一點,已知棱,,

(1)求證:
(2)將四面體繞母線轉動一周,求的三邊在旋轉過程中所圍成的幾何體的體積.
(1)詳見解析。(2)

試題分析:(1)由母線垂直于底面可得,由直徑所對的圓周角為,可得,根據(jù)線面垂直的判定定理可得。(2)在旋轉過程中形成兩個圓錐,所求體積即為兩圓錐的體積的差。
試題解析:解:(1)證明:因為點在以為直徑的圓上,所以,       2分
因為,,所以,因為
從而有                      6分
(2)由題意可知,所求體積是兩個圓錐體的體積之差,
 
故所求體積為                        12分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐PABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.

(1)求證:BD⊥平面PAC;
(2)若側棱PC上的點F滿足PF=7FC,求三棱錐PBDF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱柱ABCA1B1C1中,CACB,ABAA1,∠BAA1=60°.

(1)證明:ABA1C
(2)若ABCB=2,A1C,求三棱柱ABCA1B1C1的體積;
(3)若平面ABC⊥平面AA1B1B,ABCB=2,求直線A1C與平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知一個圓錐的母線長為3,則它的體積的最大值為     

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

一個六棱柱的底面是正六邊形,其側棱垂直底面. 已知該六棱柱的頂點都在同一個球面上,且該六棱柱的體積為, 底面周長為3, 則這個球的體積為__________________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知一個正方體的八個頂點都在同一個球面上,若此正方體的棱長為,那么這個球的表面積為_______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

圓臺的一個底面周長是另一個底面周長的3倍,母線長為3,圓臺的側面積為,則圓臺較小底面的面積為           

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在直四棱柱中,點分別在上,且,,點的距離之比為3:2,則三棱錐的體積比=" __" ___.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正三棱柱的側面展開圖是邊長分別為6和4的矩形,則它的體積為(  )
A.B.4
C.D.4

查看答案和解析>>

同步練習冊答案