已知圓O:x2+y2=5和點A(1,2),則過A且與圓O相切的直線與兩坐標軸圍成的三角形的面積=
 
分析:判斷點A在圓上,用點斜式寫出切線方程,求出切線在坐標軸上的截距,從而求出直線與兩坐標軸圍成的三角形的面積.
解答:解:由題意知,點A在圓上,切線斜率為
-1
KOA
=
-1
2
1
=-
1
2

用點斜式可直接求出切線方程為:y-2=-
1
2
(x-1),
即x+2y-5=0,從而求出在兩坐標軸上的截距分別是5和
5
2
,
所以,所求面積為
1
2
×
5
2
×5=
25
4
點評:本題考查求圓的切線方程的方法,以及求直線與坐標軸圍成的三角形的面積.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為
2
2
的橢圓,其左焦點為F.若P是圓O上一點,連接PF,過原點O作直線PF的垂線交橢圓C的左準線于點Q.
(1)求橢圓C的標準方程;
(2)若點P的坐標為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當點P在圓O上運動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個公共點A(0,1),F(xiàn)為橢圓的左焦點,直線AF被圓所截得的弦長為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個交點為C、D,B( x0,y0)是橢圓上異于點A的一個動點,在線段CD上是否存在點T(t,0),使|BT|=|AT|,若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=9,定點 A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動點,求線段PA的中點M的軌跡方程
(2)設E、F分別是圓O和直線l上任意一點,求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點P(a,b)(ab≠0)是圓O內(nèi)一點,過點P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O:x2+y2=1,點P在直線x=
3
上,O為坐標原點,若圓O上存在點Q,使∠OPQ=30°,則點P的縱坐標y0的取值范圍是( 。

查看答案和解析>>

同步練習冊答案