【題目】在四棱錐中, , ,點(diǎn)M是線段AB上的一點(diǎn),且

(1)證明:平面平面ABCD;

(2)求直線CM與平面PCD所成角的正弦值.

【答案】(1)見解析(2)

【解析】試題分析:(1)由長(zhǎng)度關(guān)系,可證,再由PM平面ABCD,從而證明平面平面ABCD。(2)通過M點(diǎn)做CD的垂面PMH,進(jìn)而做出面PCD的垂線MN,線面角為

試題解析:(1)由,得

又因?yàn)?/span>,且ABCD是梯形的兩腰,必相交,所以PM平面ABCD ,

.所以,平面平面ABCD。

(2)過點(diǎn)M,連結(jié)HP,因?yàn)?/span>,且

所以,又由平面PCD

所以平面,平面,過點(diǎn)M,即有,所以為直線CM面PCD所成角.

在四棱錐P-ABCD中,設(shè)AB=2t,則CM= ,PM= , ,

從面,即直線CM與平面 PCD所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知為橢圓 的右焦點(diǎn), , , 為橢圓的下、上、右三個(gè)頂點(diǎn), 的面積之比為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)試探究在橢圓上是否存在不同于點(diǎn), 的一點(diǎn)滿足下列條件:點(diǎn)軸上的投影為 的中點(diǎn)為,直線交直線于點(diǎn) 的中點(diǎn)為,且的面積為.若不存在,請(qǐng)說明理由;若存在,求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知95個(gè)數(shù)a1,a2,a3,…,a95, a1a2+a1a3+…+a94a95的最小正值是______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為實(shí)數(shù)).

)若,求函數(shù)處的切線方程.

)求函數(shù)的單調(diào)區(qū)間.

)若存在,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù) .

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)若函數(shù)有兩個(gè)極值點(diǎn),且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績(jī)是否與性別有關(guān),先統(tǒng)計(jì)本校高三年級(jí)每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績(jī)平均分(采用百分制),剔除平均分在分以下的學(xué)生后, 共有男生名,女生名,現(xiàn)采用分層抽樣的方法,從中抽取了名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績(jī)分為組, 得到如下頻數(shù)分布表.

)估計(jì)男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,能否判斷數(shù)學(xué)成績(jī)與性別有關(guān);

)規(guī)定分以上為優(yōu)分(含分),請(qǐng)你根據(jù)已知條件完成列聯(lián)表,并判斷是否有%以上的把握認(rèn)為“數(shù)學(xué)成績(jī)與性別有關(guān)”,( ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,ABBC,E、F分別為A1C1和BC的中點(diǎn)

(1)求證:平面ABE平面B1BCC1;

(2)求證:C1F//平面ABE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn)是平面上左、右兩個(gè)不同的定點(diǎn), ,動(dòng)點(diǎn)滿足:

(1)求證:動(dòng)點(diǎn)的軌跡為橢圓;

(2)拋物線滿足:頂點(diǎn)在橢圓的中心;焦點(diǎn)與橢圓的右焦點(diǎn)重合

設(shè)拋物線與橢圓的一個(gè)交點(diǎn)為問:是否存在正實(shí)數(shù),使得的邊長(zhǎng)為連續(xù)自然數(shù)若存在,求出的值;若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)

)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.

)求在區(qū)間上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案