分析 (1)圓的方程化為標(biāo)準(zhǔn)方程,利用勾股定理求切線長(zhǎng);
(2)求出以PC為直徑的圓的方程,兩圓方程相減求AB直線方程.
解答 解:(1)圓C:x2+y2+4x+6y+12=0,可化為(x+2)2+(y+3)2=1,圓心坐標(biāo)為(-2,-3),半徑為1,
∴|PA|=$\sqrt{(1+2)^{2}+(1+3)^{2}-1}$=$2\sqrt{6}$
(2)PC的中點(diǎn)坐標(biāo)為D(-$\frac{1}{2}$,-1),|PD|=$\sqrt{(1+\frac{1}{2})^{2}+(1+1)^{2}}$=$\frac{5}{2}$
∴以PC為直徑的圓的方程為(x+$\frac{1}{2}$)2+(y+1)2=$\frac{25}{4}$
兩圓方程相減得3x+4y+17=0.
點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系的應(yīng)用,利用直線和圓相切的等價(jià)條件是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{7}$,$\frac{1}{5}$]∪(5,7] | B. | ($\frac{1}{5}$,$\frac{1}{3}$]∪(5,7] | C. | ($\frac{1}{5}$,$\frac{1}{3}$]∪(3,5] | D. | ($\frac{1}{7}$,$\frac{1}{5}$]∪(3,5] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com