請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,是邊長為的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)

(1)若廣告商要求包裝盒側(cè)面積最大,試問應(yīng)取何值?

(2)若廣告商要求包裝盒容積最大,試問應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長的比值.

 

 

(1)當(dāng)時(shí),取得最大值;(2)當(dāng)時(shí)取得極大值,也是最大值,此時(shí)包裝盒的高與底面邊長的比值為

【解析】

試題分析:(1)先設(shè)包裝盒的高為,底面邊長為,寫出,的關(guān)系式,并注明的取值范圍,再利用側(cè)面積公式表示出包裝盒側(cè)面積關(guān)于的函數(shù)解析式,最后求出何時(shí)它取得最大值即可;

(2)利用體積公式表示出包裝盒容積關(guān)于的函數(shù)解析式,利用導(dǎo)數(shù)知識(shí)求出何時(shí)它取得的最大值即可.

設(shè)包裝盒的高為,底面邊長為

由已知得

(1)∵ 2分

∴當(dāng)時(shí),取得最大值 3分

(2)根據(jù)題意有 5分

得,(舍)或。

∴當(dāng)時(shí);當(dāng)時(shí) 7分

∴當(dāng)時(shí)取得極大值,也是最大值,此時(shí)包裝盒的高與底面邊長的比值為

即包裝盒的高與底面邊長的比值為 10分.

考點(diǎn):1.函數(shù)的應(yīng)用問題;2.函數(shù)的最值與導(dǎo)數(shù);3.二次函數(shù)的圖像與性質(zhì).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆福建省龍巖市高二上學(xué)期教學(xué)質(zhì)量檢查理科數(shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)雙曲線的左、右焦點(diǎn)分別為,上的點(diǎn),,,則的離心率為

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知命題,,則( )

A., B.,

C., D.,

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

過原點(diǎn)的直線與雙曲線有兩個(gè)交點(diǎn),則直線的斜率的取值范圍為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

,則“”是“方程表示雙曲線”的( )

A.充分不必要條件 B.必要不充分條件

C.充要條件 D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

編號(hào)為1、2、3、4、5的五個(gè)人分別去坐編號(hào)為1、2、3、4、5的五個(gè)座位,其中有且只有兩個(gè)人的編號(hào)與座位號(hào)一致的坐法有( )種

A.10種 B.20種 C.60種 D.90種

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

比較大。_______

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

若函數(shù)上單調(diào)遞增,則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆福建省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

若復(fù)數(shù)滿足 (其中為虛數(shù)單位),則復(fù)數(shù)為 ( ).

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案